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Abstract We study fibre products of a finite number of Kummer covers of the
projective line over finite fields. We determine the number of rational points of
the fibre product over a rational point of the projective line, which improves the
results of [9] substantially. We also construct explicit examples of fibre products of
Kummer covers with many rational points, including a record and two new entries
for the current table [12].
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1 Introduction

Let Fq be a finite field with ¢ = p™ elements, where p is a prime number. For
an absolutely irreducible, nonsingular and projective curve x defined over Fgy, let
N be the number of F4-rational points of x and g(x) be its genus. The number N
is bounded by the Hasse-Weil bound

N < g+1+29(C)va. (1)

If the bound in (1) is attained and g(x) > 1, then yx is called a maximal curve.
There are some improvements on (1) especially when g(x) is large [3], [4], [6],
[10], [11]. Let N4(g) denote the maximum number of Fg-rational points among
the absolutely irreducible, nonsingular and projective curves of genus g defined
over Fy. It is an important problem to determine Ng(g) and to construct explicit
curves with many rational points (see [2], and [12] for the current tables). There
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are many applications to areas including coding theory, cryptography and quasi-
random points [4], [6], [7], [10], [11].

Some types of fibre products of Kummer covers of the projective line were
studied and such explicit curves with many points were found [1], [5], [8], [9]. In
particular in [9] we studied the general fibre products of two Kummer covers of the
projective line. In this paper we study the general fibre products of a finite number
of Kummer covers of the projective line. Namely let £ > 2 and ni,na,...,ng > 2
be integers, and hi(z), ha(x), ..., hi(z) € Fq(x). Consider the fibre product

Y1t = ha(z),
Ys® = ha(z),

: (2)
yp* = hi(z).

Let E be the algebraic function field F = Fq(z,y1,y2,...,yr) with the system
of equations in (2). We will assume that [E : Fq(z)] = ninz...n, and the full
constant field of F is Fy. The theory of algebraic curves is essentially equivalent to
the theory of algebraic function fields. Throughout the paper we use the language
of function fields [10]. We call a degree one place of an algebraic function field as
a rational place (or rational point) of the function field.

Let P be a rational place of the rational function field Fq(z). In [9] we de-
termined the number of rational places of F over P when k = 2 under certain
conditions. Here we determine the number of rational places of E over P for an
arbitrary k > 2 under some conditions in Theorems 2 and 3. The conditions in
Theorems 2 and 3 allow us to obtain the results systematically for arbitrary k& > 2.
However it turns out that these conditions are strong conditions (see Remark 4).
In Assumption 1, for arbitrary k > 2, we develop a weak condition which seems
to be the most natural condition (in applying our methods) for determining the
number of rational places of E over P. Assumption 1 is also weaker than the
conditions of the theorems in [9] when k = 2. Therefore we reconsider the case
k = 2 under Assumption 1 and we improve the theorems of [9] in Theorem 4 (and
Remark 7) substantially. The proof of Theorem 4 is more difficult than the proof
of the theorems in [9] and we develop further tools in order to handle it in Section
4. The theorems of [9] correspond to a very special subcase of Theorem 4 (see
Remark 5).

We also give explicit examples of fibre products of Kummer covers with many
rational points. In particular Example 4 is a record; and Examples 5 and 7 are
new entries for the table [12].

We notice a mistake in the formulation of the theorems of [9] and we correct
it in Remark 6. This mistake does not affect the explicit examples in [9].

The paper is organized as follows. In Section 2 we fix some further notation
and introduce Assumption 1. We study the fibre products of an arbitrary number
of Kummer covers under a strong condition in Section 3. We study the general
fibre products of two Kummer covers under Assumption 1 in Section 4 and we
also develop the necessary tools there. Finally explicit examples of fibre products
with many rational points are presented in Section 5.
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2 Preliminaries

In this section we fix some notation and we introduce Assumption 1.

For an algebraic function field F' with full constant field Fq, if f(x) € F' and P
is a rational place of F', then we denote the evaluation of f(z) at P by Evp(f(z)).
We choose u € F; and we denote the rational place of the rational function field
corresponding to the zero of (x —u) as Py. Similarly the rational place correspond-
ing to the pole of z is denoted as P. For 1 < i < k, the evaluation of f;(x) at Py
is denoted also by f;(u). Moreover F; denotes the multiplicative group Fq \ {0}.

For 1 <14 <k, let a; be the integer and f;(z) € Fq(x) be the rational function
satisfying

hi(x) = (z —w)" fi(z), and vp,(fi(z)) = 0.

The integer a; and the rational function f;(z) are uniquely determined by the
conditions above. For 1 < i < k, let f;, n} and a} be the integers:

n; a;
n; = ged(ns, aq), ny=—, and a;= —. (3)
n; ng
Note that if a; = 0, then n} = 1. We have
ged(ng,a;) =1 for 1 <i<k. (4)
Next we define the positive integers ma, ms, ..., my recursively as follows:
ma = ged(ns, nt),
n/
ms = ged (b, 20 ) = ged (nf.lem (nf, )
ns nt
ma = god (22 2201 ) — ged (i lem (1, 3) (5)
m3 ma
ng_q, N n
my = ged | n, kol Th=2 2pi) = ged (n%,lcm (n/l,nlg, . ,nfg,l)) .
Mig—1 MEk—2 m2
Remark 1 For k > 3 the definitions of ma, ma, ..., mg do depend on the order
(ni,n5,...,ny) of the positive integers n,n5,...,n). For instance let K = 3 and

consider the order (n},n5,ny) = (4,6,9), from which we get (m2,m3) = (2,3). By
a simple reordering we have (7}, 75, i5) = (9,4, 6), from which we get (2, m3) =
(1,6).

Remark 2 Nevertheless the joint condition
ma|(g—1), ms|(g—1), ..., and my | (¢g—1)

is independent from the order. For instance in the case of numerical examples of
Remark 1 we get the equivalent joint conditions

{fma=21(¢-1),ms=3[(¢—1)} and {ma=1|(¢—1),m3=6](¢—1)}.

We prove this independence in Lemma 1 below.
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The following will be our main assumption. For a prime p, let v, be the p-adic
valuation: v, (p) = 1, v,(p?) = 2 and v,(n) = 0 if n is an integer with ged(n, p) = 1.
Assumption 1 For each prime p dividing ninb...n}, the following condition
holds:

Let eq,ea,...,ex_1,er be the nonnegative integers (depending on p) defined as
e1 = vp(nl), ea = vp(ny), ..., ex—1 = Vp(Np_1),ex = Vp(n}).
Let (é1,€é2,...,ék_1,€k) be the reordering of (e1,e2,...,er) such that

1 <éa << gy < 6.
The condition is:
et (

p g — 1) or equivalently v,(q — 1) > ép_1.

The following lemma shows that Assumption 1 is equivalent to the joint con-
dition mentioned in Remark 2.

Lemma 1 Under the notation as above we have that

ma|(g—1), ma|(¢g—1), ..., and my|(¢g—1) (6)
if and only if Assumption 1 holds.
Proof We keep the notation of Assumption 1. It is enough to prove that for each

prime p dividing nin5...n}, we have
max {v,(mz2),vp(ma),...,ve(mg)} = éx_1. (7)

We prove it by induction on k. The case k = 2 holds by definition. Assume that
k > 2 and (7) holds for the case k. Namely we assume that

max {v,(ma),...,Vvp(mg)} = éx_1,

where (€1, é2,...,€k_1, k) is the reordering of (e1, ez, ..., ex_1,ex) such that é; <
€2 <o <1 < ég.

Let ext1 = vp(njy1) and myq1 = ged (ngyq,lem (nh,nh,...,ny)). We need
to prove that

max {VP(mQ)a Vp(m3)7 ceey Vp(mk)a Vp(karl)} = €k, (8)

where (€1, €2, ..., €k, €x11) is the reordering of (e1, ez, ..., ex—_1,ex) such that é; <
€2 < --- < €k < épt1. Note that (8) is equivalent to

max {éx_1,Vp(Mr+1)} = k. (9)

Moreover we have
Vo(Mpy1) = min{ep41, max{e1,e2,...,ex}} = min{ext1,ér}. (10)
Assume first that egy1 < é,. As we have é, > max{é1,é2,...,éx_1} = éx_1, we

conclude that €, = max {éx_1,ex+1}. By (9) and (10), this implies (8).
Assume next that egy1 > éx. We have exy1 > é, > éx—1 and hence é, = €.
By (9) and (10), this implies (8). The proof is completed.

Remark 3 We observe that Assumption 1 is independent from the order (n},n5, ...
,n%). Therefore the condition (6) in Lemma 1 is independent from the order as
well.
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3 Finite number of fibre products under a strong condition

We keep the notation of Section 2. In this section we determine the number of
rational places of E over Py (and P) for an arbitrary finite number &, but under
a strong condition. Theorem 2 is the main result of this section. Its statement and
its proof are rather simple because of a nice condition (cf. in (12)). However it
turns out that this condition is actually a strong condition (see Remark 4).

We define the positive integers 71, iz, . .. g, recursively as:

np = ng (n1,a1) =11,

~ ni

n2 = ged | n2, —az |,
ni

ng = ged (ng, @@%) , (11)
ntn

n1N2  Nk—1 )
- e T ag | -
ni n2 Ng—1

In Lemma 2 below we will show that actually n; = n;m; for 2 <7 < k.

In the proofs of Theorem 2 and 4 below, we will frequently use Proposition
3.7.3 in [10] on Kummer extensions. It allows us to determine the ramification and
inertia indices of certain field extensions explicitly. We prefer to cite it once here
instead of citing it many times in the proofs.

Theorem 2 Under the notation as above, assume that the full constant field

of E is Fq and [E : Fg(x)] = nina...ng. Moreover assume that the integers
m1, N2, ..., Nk divide (g — 1) and also that
f2 | a2, N3 las, ..., and Ay | ag. (12)

There exist either no or exactly (Aifg ... Nk ) rational places of E over Py. There
exists a rational place of E over Py if and only if all of the following conditions
hold

— fi(u) is an f1-power in Fy,
— fa(u) is an fa-power in Fy,

— frx(u) is an fig-power in Fy.

Proof Let Ko = Fq(x). Moreover let K1, Ka,..., K be the algebraic function
fields defined recursively as

— K1 = Ko(y1) with yi"* = ha (),

— Koy = Kl(yz) with y;” = h2($),
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3
=
3

e(P1| Q1) =

1
1

Q1
e(@Q1| ) =1
Py

>
=
>

Ko
Fig. 1

- K = Kk—l(yk:) with yzk = hk(ac)

Note that K} = E. Using the assumption [Kj : Ko] = nina...ng it is not difficult
to observe that

[K71: Kol =n1, [Ko: Ki])=na, ... [Kk: Kk—1] = ng.
Let L1 be the intermediate field Ko C L1 C K7 defined as
L1 = Ko(w1) with w(" = fi(z). (13)

Note that n; divides a; by definition of n1. We observe that

nq ag

Ki=Li(y1) with y/' =z = (z —u)™ wy. (14)
Using the fact [K1 : Ko] = n1, (13) and (14) we get that

[L1: Ko] = 7, and [K7 : L1] =

>3

Moreover, the extension L1 /Ky is a Galois extension as 71 | (¢ — 1).

Let Q1 be a place of L1 over Py (see Figure 1). We have vp,(fi(x)) = 0,
ged (R1, vp, (f1(x))) = n1 and hence the ramification index e (Q1|Po) is 1. As the
extension L1 /Ky is a Galois extension, there are either no or exactly n1 rational
places of Li over Py. Therefore Q1 is a rational place if and only if fi(u) is an
fi1-power in Fy.

Assume that @ is a rational place of L1 over Py. Let P; be a place of K over
Q1 (see Figure 1). We have

a1 1
oy (1) = 2, v (o= ) = 1, ged (2w, (1)) = 1

and hence the ramification index e (P1[Q1) is £'. In particular P1|Q1 is a total
ramification. Hence P; is the unique place of K; over Q1 and P is a rational

place. We further have that

vp (z—u) = 7}1

3

1
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K; P,
n. ez
e e(Pi| Qi) = =*
g g
L; Qi
\ /G(QHPi—l)l
K1 Py

Fig. 2 (i > 2)

Now we complete the proof by induction. For 2 < ¢ < k — 1, assume that the
statement of the theorem holds and there exists a rational place P;_; of K;_1 over
Py such that

nin2 Mni—1

vp, ,(z—u)= if 4 > 2. (15)

1 N2 i1
Let L; be the intermediate field K;_1 C L; C K; such that
L;, = Ki_l(wi) with wf” = fl(as)

Note that by the assumption in (12) we have 7; | a;. We have

K; = Li(y;) with Y=z = (x — u)ﬁwl

3

We observe that, as in the case i = 1 above,
. ez
[Li : K] =1y, [Ki: L) = —,
n;
and the extension L;/K;—1 is Galois.

Let Q; be a place of L; over Pi_; (see Figure 2). We have vp, ,(fi(z)) = 0,
and @Q; is a rational place if and only if f;(u) is an fi;-power in Fy. Assume that
Q; is a rational place of L; over P;_1. Let P; be a place of K; over Q; (see Figure
2). Using (15) we get that

ni n2 ni—1
(x—u) = il P ) —y) = === = . 16
v, (=) = e (QilPim) v, (@ —w) = ZEE2 . B (16)
Then from (16) we obtain that
a; ni n2 Nni—1 a4
v \Ri) = 7V, T —U)= — <% - 17
0.() = Fvg (w—u) = P22 BEL A (17)
Moreover
od (2, 122 ot ) (18)
ni mnin2 Nni—1 1y

Combining (17) and (18) we conclude that ramification index e(FP;|Q;) is %%. In

particular P;|Q; is a total ramification, P; is the unique place of K; over Q; and
P; is a rational place. Moreover

n1 N2 Mg
Vpi(x—u):ﬁlﬁ—2~~§.
(2

This completes the proof.
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The following lemma is used in Remark 4 below.

Lemma 2 Under the notation as above we have
ny = nim,; for2 <i<k.
Proof We prove by induction. Note that n5 = na/f2, ab = az/n2 and
fi2 = ged(na, njaz) = ged(fians, ninoay) = fiz ged(ns, niaz) = Nama,

where we use the facts ged(nj, ay) = 1 and ma = ged(nb, n}) in the last equality.
For the induction, assume that 2 <¢ < k — 1 and

nj = njm; for each j with 2 < j <. (19)
We have
~ ni n2 n; .. .
fi+1 = ged (m+17 — = A—zaHl) by definition in (11),
ni n2 Uz
ni ne n;
= ged (nz'+17 —— e ai+1) by (19),
1 nN2msa TNy,
Aainy Agnk Y
_ / 1 2 1lbg / oy .
=ged | Ng+1ny — — cee = Mit+10; by definitions in (3
g ( 1+17041, i1 Tiame R i+ ’L+1) y ( )7
o ’ / n/2 né n; ’
=ni+18cd (N1, n1——— - —agq1
me ms m;
nby ns n;
_ / / 2 3 7 / /
= ;41 ged (| n; ny——..-— ) as ged(n; a; =1.
i+18 ( i+15 1m2 ms mi) ged(njyq, i)

= fli+1Mi4+1 by definition in (5).
This completes the proof.

Remark 4 In the proof of Theorem 2, if 2 < i < k, then we show that K; = L;(y:),
with

Y = (2 — u) ™ w;.

Here we essentially use the assumption that a;/7; is an integer. By Lemma 2 this
means that fi; = f;m; divides a; = fi;a;, which is equivalent to m; | aj (see (5)
and (4)). Therefore the assumption in (12) of Theorem 2 is the strong assumption
mg = mga = --- = my = 1. It is one of our main objectives to weaken this strong
assumption to the case of Assumption 1. In Theorem 4 we fulfill this objective
completely when k = 2. Its proof is more difficult than the proof of Theorem 2.

Next we give the analog of Theorem 2 for the place Po. First we introduce
some notation that we use only in the following theorem. For 1 < ¢ < k, let
fii(x) and fi2(x) be the monic polynomials in Fy[z] and ¢; € F; such that
ged(fi1(@), fi2(x)) =1 and
fii (@)

hi(z) = ¢ ()



Finite number of fibre products of Kummer covers and curves with many points 9

Moreover let d;,1 and d; 2 be the degrees of f; 1(z) and f; 2(x), respectively; and
let di = d;1 — di 2. Replacing a; by d; in (3) and (5), we redefine 7;, n; and
ma, ms, ..., mg. Furthermore replacing a; to d; in (11), we also redefine 7,. The
proof of the following theorem is similar to the proof of Theorem 2.

Theorem 3 Under the notation as above, assume that the full constant field

of E is Fqg and [E : Fg(x)] = ning---ng. Moreover assume that the integers
11,2, ...,k divide (g — 1) and also that
N2 |d2, ﬁg | d3, ey and flk | dk.

There exist either no or exactly (Aifa ... N ) rational places of E over Pss. There
exists a rational place of E over Ps if and only if all of the following conditions

hold

— c1 15 an hi-power in Fy,

— c2 15 an Ne2-power in Fy,
. . S
— ¢ 1s an fug-power in Fy.

4 Fibre products of two Kummer covers

In this section we give our results for £ = 2 under Assumption 1. Before
Theorem 4 we develop some tools that we use in its proof.

Proposition 1 Let C1,C2 be subgroups of Fy with |C1| = i1, |C2| = fiz. Let m be
a positive integer with m | (qg—1) and N be an arbitrary integer. Let S = {(x1,x2) €
C1 x Ca : there exists s € Fy such that x1 ©2 = s™}. Then the cardinality |S| of
S is

_ ni _ n1 _ q—1
S| = ged N)ged | ————= d (1 .
| | gC (TL], )gC (ng('FL1,N)’n2> gC (Cm <ng(7TL17N)’n2) I m )

Moreover let C' be the subset of Fy defined as

C= {y € Fy : there ezists (z1,22) € C1 x C2 and s € Fy such that y = x{vxgsm} .

Then C' is a subgroup of Fy with the cardinality

ni B qg—1
Cl=1 I .
€] = lem (Cm (gcd(ﬁlaN)mQ)’ m )

Proof Let C{™) be the subset of F, defined as N = (e s e € i} Tt is easy
to observe that C%N) is a subgroup of Fy with

ni

O(N) _
| ! | ng(ﬁlvN)

(20)

elements. Let CfN)Cz be the subset of F; defined as

C](_N)CQ = {$i\7332 :x1 € Cr,z2 € Ca}.
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Similarly, C£N)02 is a subgroup of Fy with
N N
|1 Col = lem (IO, |Ca)). (21)
Note that

¢ZC1XCQ—>FZ

(z1,22) — z1 2

is a group homomorphism from the Cartesian product group C1 x C2 to Fy. More-
over the image of ¢ is exactly the subgroup C£N)CQ. Hence

n1

|C1]|C2|  |C1]|Ca] _ < _ )
= ged(n1, N) ged 7gcd(ﬁ1,N)’n2 (22)

Ker ¢| = =
| | m ol oMy

where we use (20) and (21). Let M be the subset of F; defined as

M :={y € Fy : there exists s € Fy such thaty = s™}.

-1
It is clear that M is a subgroup of Fy with |[M]| = qT We observe that if
(z1,z2) € C1 x Co then
T1,x2) € 1f and only 1 Tr1,x2) € 2 M M.
S if and only if ¢ cMeynm 23

Note that CiN)CQ N M is a subgroup of F; with cardinality
O C2 0 M| = ged(IC1 Col, [M]) (24)

Using (23) we obtain that S is exactly the preimage of the subgroup C£N)CQ N

M under the homomorphism ¢. As |M| = q;l’ combining (22) and (24) we
m

determine the cardinality of S.
It is not difficult to observe that the subset C' in the hypothesis of the propo-
sition is exactly Cl(N)CQM . This completes the proof.

In fact we can simplify the cardinality of S in Proposition 1. Before giving the
simplification we need to prove the following lemma.

Lemma 3 Let A be an arbitrary integer and m be a positive integer dividing
(g—1). If A divides (¢ — 1) then

ged (A, g) — ém,
m m

where M is the largest factor of m such that A divides (¢ — 1)/m.
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-1
Proof Assume that A | (¢ — 1). Then there exists r € Z such that A = 9= As

r
r|(¢—1) and m | (¢ — 1) we know that lem (r,m) also divides (¢ — 1). Then we

have:
gcd (A7 q;l) - (Q Q)
m ' m

_ o q—-1 —q-1 _gq-—1 q—1
= fom (o) — rm ged(r,m) = =T, gcd< VI ,m)
= égcd (g,m) = ém

m A m

This completes the proof.

Combining Proposition 1 and Lemma 3 we obtain the following Corollary:

Corollary 1 Under the notations and assumptions of Proposition 1 we further
define M as the largest factor of m such that A divides (¢ — 1)/7h, where A =
n ning .

m.

lem ﬁg). Then we have that |S| =

n1
ng(ﬁh N) ’
Proof Using Proposition 1 and the definition of A as above, we have

_ n _ -1
|S| = ng(TLl, N) ng (Wlljv), TZQ) ng <A, qT) (25)

Asni | (g—1),72 | (¢g—1), we have A | (¢—1). Using Lemma 3 and (25) we have:

S| = ged(fr, Mged [ — 2 7y A
|S| = ged(n1, N) g

ged(nig, N)’ m
- lem <# m)
_ ni _ ged(ni,N)’ N
= ged N)ged
gc (TLl, )gC (ng(T_ll,N)7n2) m m

nine M ning
— — = m.
ged(ni, N) m m

= ng(ﬁla N)

This completes the proof.

The following theorem is one of our main results.

Theorem 4 Under the notation as in Section 2, let ma = ged(ns,ny) and E =
Fq(z,y1,y2) be the algebraic function field with

ygl = hi(z),
Ys® = ha(x).

Assume that the full constant field of E is Fq and [E : Fq(x)] = nin2. Moreover
assume that i1 | (¢ — 1),72 | (¢ — 1) and Assumption 1 holds for the case k = 2.
As ged(nl,a}) = 1, we choose integers A1 and By such that Ain} + Bia} = 1. Let

ni _
A=1 _— .
o (gcd(*a'gBl,ﬁl)’m)

(26)
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Let mo be the largest positive divisor of ma such that A divides (¢ — 1)/mia. Then
there exist either mno or exactly (Rinarhe) rational places of E over Py. Further-
more, there exists a rational place of E over Py if and only if all of the following
conditions hold:

C1: fi(u) is an ny-power in Fq.
C2: fa(u) is an na-power in Fq.

C3: Assume that the conditions in items C1, C2 above hold and let a1,az € Fy
such that of* = fi(u) and ag? = f2(u). Let

B =lcm (A,qil).

m2

Then
_a/ B
<a1 2Bla2) =1

Proof Let Ko = Fq(x). We divide the proof into three steps. In Step 1 we consider
certain intermediate fields F1, K1 and F2 with Ko C Fh1 C K1 C E2 C E and the
extensions E1/Ko, K1/E1 and E2/K; (see Figure 3). In Step 2 we consider an
intermediate field F» with E2 C F» C E and the extension Fa>/FE> (see Figure 4).
This is the main part of the proof. We use Corollary 1 in this part. In Step 3 we
consider the extension E/F5 and we complete the proof (see Figure 5).

Step 1

Let E1 be the intermediate field with Ko C 1 C E defined as

E1 = Ko(z1) and 2 = (x—u)" fi(z),
L m (27)
or equivalently (71,) = fi(x),
(. —u)n

where we use the facts that n1 divides a1 and a} is the integer with ain1 = a;.
The extension E1/Ky is Galois as 71 divides (¢ — 1). Let P1 be an arbitrary place
of Ey over Py (see Figure 3). We have

vpy(r —u) =1, vp,(fi(z)) =0, ged (n1, vp, (f1())) = na,

and hence the ramification index e(Pi|FPp) is 1. Therefore there are either no or
exactly n1 rational places of E; over Py. Moreover P; is a rational place of Ej if
and only if the evaluation fi1(u) of fi(z) at Po is an f1-power in Fj. Hence from
here till the end of the proof we assume that the condition C1 in the hypothesis
of the theorem holds. Let P; be a rational place of E; over P.

Let K1 be the intermediate field with 1 C K1 C E defined as

’

K1 = FEi(y1) and Yyt =21 (28)
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E>

Ps

- e(P3|P2):1
2

\ / f(Ps| ) =1

K Py
- e(Py | 1) =n}

- = /

o (P2 | Pr)=1

Ey Py
a N enim=
f(Pr| Po)=1

K() PO

Fig. 3

Here the extension K1/F7 is not necessarily Galois. Let P> be an arbitrary place
of K1 over Py (see Figure 3). We have

VPI(CE—’U,):L VPl(zl):a/b
and using (4) we obtain
ged (n,vp, (21)) = ged(ny, a1) = 1.

Therefore the ramification index e (P|Pi) is n}. In particular P;|P; is a total
ramification, P> is the unique place of K; over P, and P» is a rational place of
K1. We further have that

v, (t—u)=ni, wvp,(y1)=ai, and vp, (21) = diny. (29)
Let Es be the intermediate field with K1 C Es C E defined as
E; = K1(22) and 257 = (x — u)® fa(z),
o (30)
or equivalently (72,) = fa(x).
(z —u)

The extension E2/K; is a Galois extension. Let P3 be an arbitrary place of
E5 over P» (see Figure 3). The extension Fa/Kj is comparable to the extension
E1 /K. We have

Vp, (xfu):n/h vp, (fQ(l‘))ZO, ng(ﬁQvVP2 (fQ(w))):ﬁ27

and hence the ramification index e (P3|P2) is 1. There are either no or exactly
n2 rational places of F2 over P»; and P» is a rational place of Fs if and only if
f2(u) is an na-power in Fy. Note that the evaluation of fa(x) at P» is equal to the
evaluation of f2(x) at Po. Hence from here till the end of the proof we also assume
that condition C2 in the hypothesis of the theorem holds. Let P> be a rational
place of F2 over P;. Using (29) we further obtain that

vp, (x —u) =ni, vp, (1) = al,

31
vp, (z1) = ainy, and  vp, (22) = abn]. (31)
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Iy
6(P4|P371):1 P4‘P32—1
f(Py| Psa) =1 \ / \ /J”D|P32>1
ma ningmsa many
ma
Lo >
P31 P32
Eo n1M2 many
Fig. 4
Step 2

Let F> be the intermediate field with Fs C F> C E defined as
Fr = B (w) and w™? = 2. (32)

The extension F>/E> is Galois as ma divides (g—1). Recall that, as we have already
assumed that the conditions C1 and C2 hold, the number of rational places of E5
over P is n1fi2. Let T be the set of rational places of E2 over P%. Recall also that
a1 and a2 are the chosen elements of F} with o' = fi(u) and af? = fa(u). Let
P3 be an arbitrary place in 7. Using (27) (30) and (31), for the evaluations

21

B = Evp, (W) and B = Evp, (ﬁ) :

we conclude that 37* = fi(u) and 83* = fo(u). Let C1 and C2 be the subgroups
of Fy with |C1| = 71 and |C2| = f2. Therefore we obtain that the map

QD:T—>01XCQ

1 z 1 z
Fs = (aTEVPa (W) P BV (W))

is a bijection between the set 7 and the cartesian product group Ci x Cs.

Now we state the main difficulty in Step 2. Note that in all the extensions in
Step 1, the places over Py are all rational or all non-rational, depending on the
conditions C1 and C2. We will see that this is not the case in the extension F>/Es
in general. Let 77 be the subset of 7 consisting of the places Ps € 7 such that
there exists a rational place of Fy over Ps. Let 72 = 7 \ 71. A generic element of
T is indicated as P31 in Figure 4. Similarly a generic element of 7> is indicated
n1M2M2

as P32 in Figure 4. We will prove that the cardinality of 77 is , where ma

ma2
is the positive integer defined in the hypothesis of the theorem.

Recall that A; and B; are the integers with A1n} + Biaj = 1. Let t be the
element of Ey given by

t=(z—u)yr"
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Let P3 be an arbitrary element of 7. Using (31) we get
l/ps(t) = Alnll + Bla/l =1.

In particular ¢ is a local parameter of Eo for all places in 7. Using (31) we also

get that
z2
vp, (t"’la’z) =0.

Recall that ma divides n}. An alternative definition of F», which is equivalent to
the one in (32) is

mao

w d w V4)
an = —F.
o o pakn]
t%2m, t%2m,

> =F»

Hence 77 is exactly the subset of 7 consisting of P3 € 7 such that

z2 . . *
Evp, PPy is an ma-power in Fg.

21

Let N be the integer N = —Bja5. We also have the following

z2 29 (m — u)a; B 29 (:E _ u)a;(Aln’1+Bla’l)
ta’zn'l - (w o u)a'z ta’zn’l - (w o u)a; ta’zn’l ’
29 (1, o u)a’z(Aln’1+B1a’1)

= . — by definition of ¢,
(z —u) (z — u)Ala’zn’Ilelaznl v

_ %2 (z — u)Prar 23
- (J; _ ’U,)aIZ lelaén’l ? ( )
1\ Biaj
z2 (. —u)™
= ; by (28),
(z — u)22 ( z1 ) y (28)
N
= #2 . ( 1 - ) by definition of V.
(z —u)% \ (z—u)™
Let ¢(P3) = (c1,c2). Then by definition of ¢
21 Z2
Evp, <m> =aic1 and Evp, (m) = aca. (34)
Combining (33) and (34) we obtain that
z
Evp, <ta£>72n'1> = (a1c1)N azea. (35)

Let S be the subset of Ci x Cy consisting of (c1,c2) € C1 x Cz such that
(c1c1)N azes is an ma-power in Fy. Using (35) and the arguments above we con-
clude that |71| = |S]. In fact ¢ also gives a bijection between 77 and S.
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We determine |S| using a related subset of C1 x C2 and a related subset of F.
Let S be the subset of C1 x Cy consisting of (c1,c2) € C1 x Ca such that ¢} ¢o is an
ma-power in Fj (cf. Proposition 1 above). Let C be the subset of F consisting of
y € Fy such that there exist (z1,z2) € C1 x C2 and s € Fy satisfying y = N zos™2
(cf. Proposition 1). In fact C' is a subgroup of F; as proved in Proposition 1. We
claim that S is nonempty if and only if o s € C. Assume that S # (0 and
(¢1,¢2) € S. Then there exists s € F; such that (1c1)N azea = s™2. Therefore

N NV 1 .,
oy ag = | — —s
C1 Cc2

and hence ol o € C. Conversely if a ay € C, then there exists (z1,z2) € C1 xCo

1 1 =
and s € Fy such that al¥as = zNzos™2. This implies that (m—, z—) € S, and
1 T2

in particular S is not empty. We further know the cardinality of the group C by
IC|
Proposition 1. Therefore |71| # 0 if and only if <a11Voz2) = 1, which is condition
C3 of the hypothesis of the theorem. From here till the end of the proof we further
assume that condition C3 in the hypothesis of the theorem holds.
Next we determine the cardinality |71|. Let (z1,22) € C1 x C2 and s € F such
that

N _ N mao
Q1] 2 = T1 28 .

Let 0 be the map

0:8— 8
(c1,c2) — (C—l 6—2)

x1’ T2

It is not difficult to observe that 6 is a bijection between S and S. Using Corollary
1 we conclude that

T = |S| = |S] = M.
ma2

Let P31 be a place of 77. Let P4 be an arbitrary place F> over P31 (see Figure
4). The extension F»/Fs is Galois, the ramification e(P4|P3,1) and the inertia
f(P4]Ps3,1) indices are 1 and hence there are exactly mo rational places of F» over
Ps.1. Therefore the number of rational places of F» over Py is

nin2 . o
ma2 | M2 = Ninamsa.
ma2

Furthermore we have

vp, (x —u) =ny, vp, (1) = a1,

i 36
vp, (22) = CLIQ"QL,L and vp, (w) = aéﬂ (36)
m2
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FE = K> Ps
n/
ny _ mp e(Ps | 1) = 2
nomso o mo
f(Ps | Py)=1
Fy Py
Fig. 5
Step 3

Let K2 be the intermediate field defined as

A
n2

Ko = Fo(y2) and Yg'? = w.

It is not difficult to observe that Ko = E. Moreover the extension Ka/F> is
not necessarily Galois. Let Ps be an arbitrary place of K2 over Py (see Figure 5).
Using (36), (4) and (5) we obtain that

! ! !
ged (E,m (’w)) = ged (Eﬂéﬂ) =1
m2 ma

ma2

/
Therefore the ramification index e(Ps|Py) is E, Ps| Py is a total ramification; and
ma2

Ps is a rational place of K2, which is also the unique place of Ko over P4. This
completes the proof.

Remark 5 We compare Theorem 4 and Theorems 2.2 and 2.5 of [9] in this remark.
We keep the notation of Theorem 4. One of the main conditions of Theorems 2.2
and 2.5 of [9] is malcm (i1, 72) | (¢ — 1) (see [9, C3 in Theorem 2.2] and [9, D3 in
Theorem 2.5]). We will show that

melcm (77L17’I_12) | (q — 1) = Mo = mo. (37)

Therefore there are either no or exactly 717i2mo rational places over Py (or Ps)
(see also Remark 7 below). The extra condition meolem (fi1,72) | (¢ — 1) corre-
sponds to a special subcase of Theorem 4, in which one does not need most of
the tools developed for its proof. Therefore the proofs of Theorems 2.2 and 2.5
of [9] are much easier than the proof of Theorem 4 here. Now we show (37). As
melem (R1,72) | (¢ — 1) and A divides lem (721, fi2) by its definition, we get that
(m2A4) | (¢ — 1) and hence m2 = ma.

Remark 6 There is a mistake in the formulation of Theorems 2.2 and 2.5 of
[9]. The condition C3 in the statement of Theorem 2.2 should be moved above.
Namely the phrase “ni,n2 and m divide ¢ — 1” should be corrected to the phrase
“mlcm (71,72) | (¢g—1) and C3 should be removed form the list of the conditions.
The same correction should be made for the condition D3 in Theorem 2.5 of [9].
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Remark 7 Recall that in the end of Section 2, introducing the notation including
¢; and d; and redefining certain parameters by changing a; to d;, we have obtained
the analog of Theorem 2 for the place Py in Theorem 3. Theorem 3 uses ¢; in its
statement instead of f;(u). Similarly we obtain the analog of Theorem 4 for the
place Ps. We do not to state it explicitly here as it can be easily derived from
Theorem 4 (see also [9, Theorems 2.2 and 2.5]).

5 Examples

In this section, using Theorem 4 and Remark 7, we obtain explicit examples
of fibre products of Kummer extensions with many rational places. In particular
Example 4 is a record; and Example 5 and Example 7 are new entries for the table
in [12]. As also indicated in the homepage (http://www.science.uva.nl/ geer) of
Prof. Dr. Gerard van der Geer, the tables in [2] were last updated on October 7,
2009 and the current updated table of curves with many points is in the website
[12].

Throughout this section, for the algebraic function field E in the examples,
N(F) and g(FE) denote the number of rational places and the genus of the function
field F, respectively.

Ezample 1 Let E = F5(x,y1,y2) be the function field over Fs given by the follow-
ing equations:

yi = x(2® — 2)

yg =z* -2~z -2

The genus of F is g(E) = 4 and N(FE) = 18. This is the best value known in the
table [12].

Ezample 2 Let E = Fs(x,y1,y2,y3) be the function field over Fs given by the
following equations:

yi = x(2® — 2)
y%:x3—2m2—m—2
y3 = x(z* 4+ 22° — 227 — 224+ 2)

The genus of E is g(E) = 5 and N(E) = 20. This is the best value known in the
table [12].

Ezample 3 Let E = Fs(x,y1,y2,y3) be the function field over Fs given by the
following equations:

yi = a(a® - 2)
y%:x3—2w2—a}—2
y§=x6+4m4+3x2+1

The genus of F is g(E) = 13 and N(E) = 36. This is the best value known in the
table [12].
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Ezample 4 Let E = Fs(x,y1,y2,y3) be the function field over Fs given by the
following equations:

y%:w(:cQ—Z)
yg:mg—sz—x—2
y3 = x(z* + 2%+ 2)

The genus of E is g(E) = 15 and N(FE) = 36. This is a new record. In this case
the best known lower bound is 35 in the table [12].

Ezample 5 Let E = Fss(x,y1,y2) be the function field over Fss given by the
following equations:

yi =2’ +a

y%:m3+x+2

The genus of E is g(E) = 4 and N(E) = 170. This is a new entry for the table
[12].

Ezample 6 Let E = Fr(x,y1,y2) be the function field over F7 given by the follow-
ing equations:

y%:1+x2+2x3+615+m6
ys =% +1

The genus of E is g(E) = 9 and N(F) = 32. This is the best value known in the
table [12].

Ezample 7 Let E = Fy12(x,y1,y2) be the function field over Fy;2 given by the
following equations:
yi=2"+a

y%Q — x2(1 _ x2)
The genus of E is g(F) = 31 and N(E) = 612. This is a new entry for the table
[12].

Ezample 8 Let E = Fy32(x,y1,y2) be the function field over Fy32 given by the
following equations:

yi=a"+1
7 7
ya = -z —1

The genus of E is g(E) = 36 and N(E) = 1106. This function field is maximal.
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