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Abstract. We explain how to compute the equations of the abelian coverings
of any curve defined over a finite field. Then we describe an algorithm which
computes curves with many rational points with respect to their genus. The
implementation of the algorithm provides 7 new records over F2.

Introduction

The motivation for finding curves defined over a finite field Fq with many rational
points compared to their genus comes from the theory of error-correcting codes. Let
C be a (n, k, d)-code, that is a sub-vector space of Fnq of dimension k in which every
non-zero vector has at least d non-zero coordinates in a fixed basis. For given
parameters n and k, one wishes to find codes with the largest possible correction
capacity (d− 1)/2.

In a 1977 paper ([Gop77]), Goppa proposed a method for constructing codes
which is based on algebraic geometry. Let X be a (non-singular projective ir-
reducible) curve X defined over Fq. Let D1 = P1 + · · · + Pn and D2 be two
divisors over X with disjoint support such that the points Pi are rational and
2g − 2 < deg(D2) < n respectively. Let ΩX(D1 −D2) be the space of differentials
ω on X such that div(ω) ≥ D2 −D1 and let resPi

(ω) be the residue of ω at Pi; the
Goppa code C(X,D1, D2) associated to this data is the image of the Fq-linear map
ΩX(D1 −D2) → Fnq defined by ω 7→ (resP1(ω), ..., resPn(ω)). For these codes, the
Riemann-Roch Theorem shows that k = g − 1 + n− deg(D2) and that

k

n
+ d

n
≥ 1 + 1

n
− g

n
.

By construction, n is bounded by the number of rational points N(X) of X, and
from the above inequality, for given n and k, the smaller the genus, the more efficient
the code. So one would like to find, for every n, the smallest genus g such that
there exists a curve X/Fq with at least n rational points. The moral of all this is
that one must look for curves with many rational points compared to their genus,
for every genus.

The idea of using Class Field Theory to construct abelian coverings with many
rational points over a finite field comes from Serre (see [Ser83]). His Harvard course
notes ([Ser85]) remain a very useful reference with a lot of material. Niederreiter
and Xing continued the search for good curves and devoted many papers to find
new techniques. One can quote in particular the explicit description of ray class
fields provided by the theory of Drinfel’d modules. Their book ([NX01]) includes
all their work on the subject and much more. In a series of paper of the late
90s ([Lau96], [Lau99a], [Lau99b]), Lauter extended Serre’s method and obtained
new records by studying the degree of certain abelian extensions of the rational
function field ramified at a single rational place and totally split at the others. She
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also interpreted several known families of curves as particular class field theoretical
constructions. Auer (see his PhD thesis [Aue99] or the ANTS paper [Aue00] for
a summary of the results) extended Lauter’s work and described an algorithm to
compute the degree of the maximal abelian extension of any function field at most
ramified at one place and with prescribed splitting behavior. This allowed him to
find many new curves improving the known records. We conclude this historical
survey by noting that only in a few cases one can deduce the equation of the curve
from its theoretical construction, especially, the so called “explicit” description via
Drinfeld modules is very difficult to use.

In the present article, we use explicit Class Field Theory to compute the equa-
tions of the abelian coverings of a curve defined over a finite field, and apply it
to the problem consisting of finding curves with the maximum possible number of
rational points compared to their genus. The paper is divided as follows: in the
first section we explain the link between ray class groups and abelian coverings.
Then we describe how to use explicit Class Field Theory to compute the equation
of an abelian covering of a curve with knowledge of the corresponding ray class
group. In section 3 we present an algorithm to find good curves and then give an
overview of the results in section 4.

Acknowledgments. The first author would like to thank Everett Howe and his
advisor David Kohel for their support during the preparation of the paper, as well
as Jérémie Detrey and Emmanuel Thomé for their help with Magma.
Both authors thank the anonymous referees for their useful comments about a first
version of the article.

1. Ray Class Groups

We first recall the main aspects of Class Field Theory in the classical language
of ray class groups. The reader is referred to [Lan94], [Mil11b] or [Wei95] for the
proofs.

Let K be a global function field defined over a finite field Fq; K should be
thought of as the function field of a curve X defined over Fq. The set of places of
K is denoted by PlK . Let m be a modulus on K, i.e. an effective divisor over K.
Let Divm be the group of divisors of K whose support is disjoint from that of m,
and let Pm,1 be the subgroup of divisors of functions ‘congruent to 1 modulo m’:

Pm,1 = {div(f) : f ∈ K× and vP (f − 1) ≥ vP (m) for all P ∈ PlK}.
A subgroup H of Divm of finite index is called a congruence subgroup modulo m if
H contains Pm,1.

By the Artin Reciprocity Law, for every finite abelian extension L of K there
exist a modulus m and a congruence subgroup Hm(L) modulo m such that the Artin
map provides an isomorphism of groups

Gal(L/K) ∼= Divm/Hm(L).
Such a m is called an admissible modulus for L/K; it is not unique (whereas for a
given m, Hm(L) is), but there exists an admissible modulus fL/K for L/K, called
the conductor of L/K, which is smaller than the others in the sense that every
admissible modulus m for L/K satisfies fL/K ≤ m (as divisors). An important
property of the conductor of an abelian extension is that its support consists of
exactly those places which are ramified.
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The Existence Theorem of Class Field Theory guarantees for any modulus m and
any congruence subgroup Hm modulo m the existence of a unique global function
field Lm(Hm), possibly defined over a constant field extension, which is a finite
abelian extension of K such that

Gal(Lm(Hm)/K) ∼= Divm/Hm.

The field Lm(Hm) is called the class field of Hm. Note that by definition of the
conductor, fLm(Hm)/K ≤ m.

Instead of working with congruence subgroups modulo a certain m, it is some-
times more convenient to consider subgroups of the ray class group modulo m, which
is the quotient group

Picm = Divm/Pm,1.

To each congruence subgroup H modulo m, one can associate the subgroup H̄ =
H/Pm,1 of Picm of finite index. This correspondence is one-to-one, and furthermore
we have the isomorphism

Picm/H̄ ∼= Divm/H.

We can thus restate what has been said above as follows:

Theorem 1 (Main Theorem of Class Field Theory). Let m be a modulus. There
is a 1-1 inclusion reversing correspondence between subgroups H of Picm of finite
index and finite abelian extensions L of K with conductor less than m. Furthermore
the Artin map provides an isomorphism

Picm/H ∼= Gal(L/K).

2. Computing the equation of an abelian covering

In all this section, K is a function field defined over a finite field Fq. We fix
a modulus m and a congruence subgroup H modulo m, and we explain how to
compute the class field L of H. The similar approach for number fields has been
introduced by the second author in [Fie01], where one will find more algorithmic
details, and the computations of groups of units and ray class groups are explained
in [HPP03].

2.1. Reduction to the cyclic case. First, we show that we can reduce the prob-
lem to the case of a cyclic extension of prime power degree. For this, we use the
fundamental theorem of abelian groups to decompose H̄ = Divm/H as a finite
product of cyclic groups H̄ =

∏d
i=1 H̄i, where each H̄i is of the form Divm/Hi for

a subgroup H ⊆ Hi ⊆ Divm(K) such that H̄i
∼= Z/(pmi

i Z) for some prime number
pi and some positive integer mi. For every i, let Li be the class field of Hi, so
Gal(Li/K) ∼= H̄i, and let L′ be the composite field L1L2 · · ·Ld. By general Galois
theory, Gal(L′/K) is isomorphic to the subgroup of elements of

∏d
i=1 Gal(Li/K)

which agree on L1 ∩ · · · ∩ Ld. The functoriality of the Artin map implies that
the previous condition is always true, so Gal(L′/K) ∼=

∏d
i=1 Gal(Li/K). Thus

Gal(L/K) and Gal(L′/K) are equal, and by the uniqueness property of the class
field, we conclude that L =

∏d
i=1 Li. Also, note that if we have equations for two

abelian extensions L1/K and L2/K, then there are algorithms based on the theory
of resultants to compute an equation of L1L2/K.
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Diagram 1. Fields used implicitly

2.2. Cyclic case: l 6= p. Now suppose that H̄ is cyclic of prime power degree
n = lm for a prime l different from p and an integer m ≥ 1. As in the proof of the
Existence Theorem (see [Lan94, Chap. XI, §2]), the idea consists in reducing to
the case when K contains the n-th roots of unity, and then to use explicit Kummer
theory. So let K ′ = K(ζn) and set L′ = LK ′: we will ‘translate” the problem to
the extension L′/K ′ (note that the extension K ′/K is a constant field extension,
hence it is unramified).

We will use the diagram 1 where solid lines connect fields that are actually
constructed during the execution of the algorithm, while dotted lines connect fields
that are only implicitly used.

Since L/K is cyclic of degree n, the field L′ := L(ζn) = K ′L is a Kummer
extension of K ′, hence there exists a non-zero element α ∈ K ′ such that L′ =
K ′( n
√
α). Since L′/K has to be unramified outside places in the modulus m of

L/K, there exists a set S of places of K ′, depending only on m and K ′, such
that α can be chosen as an element of the S-units US , i.e. as an element that has
no poles outside S; in particular, L′/K ′ is unramified1 outside S. Let m′ be an
admissible modulus for L′/K ′, and assume without loss of generality that m′ is
supported on S. By the Dirichlet Unit Theorem, US = 〈ε1, . . . , εs〉 for independent
elements εi (1 ≤ i ≤ s − 1) and a torsion unit εs. We set M := K ′( n

√
US) and

get Gal(M/K ′) = (Z/nZ)s. For any place P of K ′ unramified in M/K ′, the
Frobenius (P,M/K ′) at P is defined by its operation on the n

√
εi, thus since M/K ′

is unramified outside S, we get a map Divm′ → (Z/nZ)s defined by P 7→ (ni),
where n

√
εi 7→ ζni

n
n
√
εi and n

√
εi
N ≡ ζni

n
n
√
εi mod P , with N the cardinality of the

residue field FP of K ′ at P . In particular, N ≡ 1 mod n because FP contains the
n-roots of unity, thus ni is defined by ε

dN/ne
i ≡ ζni

n mod P . To summarize: the
Artin map from Divm′ to (Z/nZ)s is explicit and can be computed in K ′ already!

1This is a general property of Kummer extensions, which follows from Hensel’s lemma, see for
example [Neu99, Lem. V.3.3].
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Diagram 2. Definition of ψ

Now, to find L′ we need to find divisors D ∈ Divm′ such that (D,M/K ′) fixes
L′. By the Existence Theorem, this is equivalent to D ∈ H ′, where H ′ is the
congruence subgroup modulo m′ whose class field is L′. By standard properties
of the Artin map, this reduces to NK′/K(D) ∈ H. We use this as summarized in
diagram 2 to explicitly construct the map ψ: computing (P,M/K ′) on the one side
and NK′/K(P ) + H ∈ Divm/H on the other, we collect (small) places outside S
until the full group Gal(M/K ′) can be generated. The field L′ is then obtained as
the field fixed by the kernel of ψ.

In order to find α we apply a similar idea again ([Fie01, §4] for details): L′/K is
abelian and the Galois group can be computed explicitly. Once the automorphisms
of L′/K are known, we can easily establish again an explicit Artin map, now from
Divm to Gal(L′/K), and find the subgroup fixing L as above. We note that the
conductor of L′ can be larger than the conductor of L/K, but since L′ is obtained
via a constant field extension, the ramified primes remain the same, hence the map
is well defined and surjective (but the kernel may not be a congruence subgroup
modulo m).

2.3. Cyclic case: l = p. Finally we turn to the case when L/K is cyclic of degree
n = pm, for an integer m ≥ 1. To begin with, we recall some aspects of Artin-
Schreier-Witt theory. Let k be any field and let k̄ be an algebraic closure of k. Let
r be an integer and let Wr(k) and Wr(k̄) be the rings of Witt vectors of length r
with coefficients in k and k̄ respectively. Then any ~α in Wr(k̄) can generate an
algebraic extension k(~α) of k in the following way: if ~α = (α1, . . . , αr), then we set

k(~α) = k(α1, . . . , αr).

This construction is equivalent to that of the tower

kr = k(~α),
↑
...
↑
k2 = k1(α2),
↑
k1 = k0(α1),
↑
k0 = k
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Suppose now that k has positive characteristic p. Let ℘ be the Artin-Schreier-
Witt operator acting on ~α ∈Wr(k̄) by

℘(~α) = ~αp − ~α = (αp1 − α1, . . . , α
p
r − αr).

Then for ~β in Wr(k) the equation ℘(~α) = ~β is algebraic over k, so as above one can
consider the extension k(℘−1(~β)). Actually, by explicit Artin-Schreier-Witt theory
(see [Lan02, pp. 330-332]), every abelian extension of exponent pr of k arises as a
k(℘−1(∆r)) for some subgroup ∆r ⊆Wr(k) containing ℘(Wr(k)). In particular, a
cyclic extension of degree pr of k is of the form k(~γ) for some ~γ in ℘−1(k) ⊂Wr(k̄),
with Galois group generated by the automorphism ~γ 7→ ~γ + (1, 0, ..., 0) (see [Sch36]).

So for our purpose we take r = m and can assume that the cyclic extension of
degree pm of K is of the form L = K(~y) for some ~x ∈ Wm(K) and ~y ∈ Wm(K̄)
satisfying ℘(~y) = ~x, and we now explain how to compute ~x. It is clear that the
Artin-Schreier-Witt extension does not change if one replaces ~x with ~x + ℘(~z) for
some ~z in Wm(K), so one will look for ~x as an element of Wm(K)/℘(Wm(K)).

We first look at the case m = 1; hence we assume that L/K is a cyclic extension
of degree p, and denote ~x = x.

Lemma 2. Let y ∈ K be arbitrary. For every place P of K there exists an element
uP ∈ K such that either vP (y + upP − uP ) is negative and coprime to p, or vP (y +
upP − uP ) ≥ 0.

Proof. If vP (y) ≥ 0 or vP (y) is coprime to p then uP := 0 works, hence assume
vP (y) < 0 and p|vP (y). Let ȳ := (yπ−vP (y))(P ) ∈ FP , where FP is the residue class
field of K at P and π a uniformizing element (i.e. vP (π) = 1). Since the p-power
Frobenius is surjective, we can find a ū ∈ FP such that ūp = −ȳ. Now let u be a
lift of ū in K: there exists a ∈ K with vP (a) > vP (y) such that y + upπvP (y) = a.
Then, since vP (y) < vP (y)/p < 0, we have vP (y + (uπvP (y)/p)p − uπvP (y)/p) ≥
min{vP (a), vP (y)/p} > vP (y) (note that vP (u) = 0), and we can recurse. �

We make also use of the fact that the ramified places P in L/K (which appear
in the support of m) are exactly those for which there exists uP as above such
that λP := −vP (y + upP − uP ) is positive and coprime to p; furthermore, the
conductor fL/K verifies vP (fL/K) = λP +1 (use [Sti09, Prop. 3.7.8] and Proposition
4 below), so λP does not depend on y. Thus Lemma 2 is useful to understand the
ramification in L/K, but to compute explicitly L, we need to find a Riemann-
Roch space containing the generator x. So we combine Lemma 2 with the Strong
Approximation Theorem to get a global result:

Lemma 3. Let y ∈ K. For every place P , let uP and λP be as above. Let S be
the set of places P of K such that λP > 0, and let S′ := {P ∈ PlK : vP (y) < 0},
so S ⊆ S′. Fix an arbitrary place P0 /∈ S′, and let n0 be a positive integer such
that D := n0P0 −

∑
P∈S′ 2P is non-special. Then there exists some u such that

vP (y + up − u) = −λP for P ∈ S, vP (y + up − u) ≥ 0 for P /∈ S ∪ {P0}, and
vP0(y + up − u) ≥ −pn0.

Proof. By the Strong Approximation Theorem and its proof (see [Sti09, Theo.
1.6.5.]), there exists an element u in K such that vP (u − uP ) = 1 for P ∈ S′,
vP (u) ≥ 0 for P /∈ S′ ∪ {P0}, and vP0(u) ≥ −n0. We have:

v := vP (y + up − u) = vP (y + upP − uP + (u− uP )p + (uP − u))
≥ min{vP (y + upP − uP ), pvP (u− uP ), vP (uP − u)},
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which provides that v = −λP if P ∈ S, and v ≥ 0 if P ∈ S′ \ S. In the same way,

v = vP (y + upP − uP + (up − u)− (upP − uP ))
≥ min{vP (y + upP − uP ), vP (up − u), vP (upP − uP )},

so we also have that v ≥ 0 if P /∈ S′ ∪ {P0}, and v ≥ −pn0 if P = P0 (note that
uP = 0 when P /∈ S′). �

Thus we have that x := y + up − u is an element of the Riemann-Roch space

L(pn0P0 +
∑
S

λPP ) = {f ∈ K : div(f) ≥ −pn0P0 −
∑
S

λPP}.

We now turn back to our hypothesis that L/K is a cyclic extension of degree
pm, for some m ≥ 1, with primitive element ~x. Following [Sch36], we study the
vector λP := −vP (~x) := (−vP (x1), . . . ,−vP (xm)). By adding elements of the form
℘(0, . . . , 0, x, 0, . . . , 0) we can assume that there exist sets Si ⊂ Supp(m), places
P0,i not in Si and positive integers n0,i such that xi is in L(pn0,iP0,i +

∑
Si
λP,iP ),

where λP,i := −vP (xi) > 0 and gcd(λP,i, p) = 1 for P ∈ Si.
Setting MP := max{pm−iλP,i : 1 ≤ i ≤ m}, we obtain vP (fL/K) = MP + 1 from

[Sch36, p. 163]. Given that we already know a modulus m such that fL/K ≤ m,
we immediately get λP,i ≤ (vP (m) − 1)pi−m. If m =

∑
P nPP , then we set Di :=

pn0,iP0,i +
∑
Si

(nP − 1)pi−mP . With these notations, we see that xi is an element
of L(Di).

By induction, we assume that the xi have been computed for 1 ≤ i ≤ m − 1
and explain how to find xm. Set Mm := K(℘−1(x1, . . . , xm−1)) and D := Dm; as
remarked above, we can identify xm as an element of the Fq-vector space

LK(D) = LK(D)/℘(LK(D)).

Let d be its dimension over Fp. Then we compute a Fp-basis of LK(D), and lift
it to a set of d elements {f1, . . . , fd} of LK(D). Hence xm is an element of the
sub-vector space of LK(D) generated by the fi:

xm =
d∑
i=1

aifi

for some unknown elements ai of Fp. Next, we set

M := K(℘−1((x1, . . . , xm−1,LK(D)))) = Mm(℘−1(0, . . . , 0,LK(D))),

so that we have a tower K ⊂ Mm ⊂ L ⊂ M . Note that similar to the Kummer
case, neither M nor Mm is actually ever constructed. We will use the explicit
action of the Frobenius automorphisms on Witt vectors of length m, so we iden-
tify (x1, . . . , xm−1) with (x1, . . . , xm−1, 0) ∈ Wm(K) and fi with (0, . . . , 0, fi) ∈
Wm(K). Let P be an unramified place of K; then the Frobenius automorphism
(P,L/K) acts on ~y as follows (see [Sch36]):

(P,L/K)(~y) = ~y +
{
~x

P

}
,

where the last term is in Wm(Fp) ∼= Zp mod pm and verifies{
~x

P

}
= TrFq/Fp

(~x+ ~xq + · · ·+ ~x
N(P )

q mod P ).
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We now compute Gal(M/Mm). We have canonical isomorphisms

Gal(M/Mm) ∼=
d∏
i=1

Gal(Mm(0, . . . , 0, ℘−1(fi))/Mm) ∼= (Z/pZ)d,

and this is explicit via the Frobenius: every Gal(Mm(0, . . . , 0, ℘−1(fi))/Mm) is
generated by the isomorphisms (Q,Mm(0, . . . , 0, ℘−1(fi))/Mm), where Q is a place
of Mm. Because of the canonical isomorphism Gal(Mm(0, . . . , 0, ℘−1(fi))/Mm) ∼=
Gal(K(℘−1(fi))/K), they are of the form

yi 7→ yi +
{
fi
P

}
,

where yi is a primitive element of K(℘−1(fi))/K and P is the place of K below Q.
Since the symbol {·} is additive ([Sch36]), we have

Gal(K(℘−1(fi))/K) ∼=
〈{

fi
P

}〉
,

and so the isomorphism Gal(M/Mm) ∼= (Z/pZ)d is explicit via the map

(Q,M/Mm) 7→
({

f1

P

}
, . . . ,

{
fd
P

})
.

We lift the terms in {·} from Wm(Fp) to Zp, and if we can find enough places Pi
such that the Zp-vectors ({

f1

Pi

}
, . . . ,

{
fd
Pi

})
i

form a matrix of rank d over Zp, then we are done, because by Class Field Theory
every element of Gal(M/Mm) is a Frobenius automorphism for some place Q. The
generator is now obtained in exactly the same way as in the previous section for
Kummer extensions – for which all that is necessary is an explict Artin map.

3. An algorithm to find curves with many points

We now turn to the explicit applications of the theory described in the preced-
ing sections, and switch between the language of curves and function fields when
necessary. Our aim here is to find curves of low genus (g ≤ 50) defined over a
small finite field (q ≤ 100) such that the number of rational points is the maximum
possible; the current records can be found at www.manypoints.org. So we will
only be interested in the abelian extensions L/K defined over a same finite field
Fq such that the number of rational places of the field L is greater or equal to the
corresponding entry in the table2. Furthermore, with the theory of §2, we will be
able to find the equations of such extensions.

Proposition 4. Let L/K be a cyclic extension of prime degree l of function fields
defined over a finite field Fq. Then the genus of L satisfies:

gL = 1 + l(gK − 1) + 1
2(l − 1) deg(fL/K).

2Note that L is defined over Fq as soon as at least one rational place of K splits totally in L,
which will be the case to find a L with many rational places.

www.manypoints.org
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Proof. By the Riemann-Hurwitz Genus Formula, this comes down to showing that
the degree of the different DL/K of L/K is (l − 1) deg(fL/K). Let Q be a place of
L and let P be the place of K below Q. The extension being Galois, the inertia
degree of P relatively to Q is independent of Q, so we denote it fP . Let N = NL/K :
Div(L)→ Div(K) be the norm map defined by linearizing the formula N(Q) = fPP .
From the general relation deg(Q) = fP deg(P ), we note that deg(N(DL/K)) =
degDL/K . By the Conductor-Discriminant Formula, N(D(LK)) is equal to fl−1

L/K ,
so by taking degrees we obtain the proposition. �

From Proposition 4, the genus of an abelian extension of global function fields
L/K of prime degree is exactly determined by its conductor fL/K , or even simply
by its degree. On another side, fL/K identifies L as the only field such that the
Galois group of L/K is a quotient of the ray class group modulo fL/K by a certain
subgroup of finite index. So, starting from a prime number l and a modulus m
defined over a global function field K with field of constants Fq, one can enumerate
all the abelian extensions L of K of degree l and of conductor fL/K less than m by
computing all the subgroups of index l of Picm. We also know in advance that the
genus of these extensions will be less than

1 + l(gK − 1) + 1
2(l − 1) deg(m).

Since l is a prime, all places which ramify have the same ramification type:
either they are all wildly ramified, or they are all tamely ramified. The following
proposition thus describes what kind of m one should test for a given l:

Proposition 5. Let L/K be an abelian function field extension. Let P be a place
of K. Then P is wildly ramified in L/K if and only if P appears in the conductor
of L/K with multiplicity greater than 2, i.e.

P is wildly ramified if and only if fL/K ≥ 2P.

Proof. From [Mil11a, Cor. 7.59], we see that a place P is tamely ramified if and
only if the first ramification group in upper numbering is trivial, and from the
local-global property of the conductor, it amounts to saying that P has weight one
in fLK

. So a place with weight at least two must be wildly ramified. �

So if l is prime to the characteristic p of K, then m must be of the form

m =
n∑
i=1

Pi,

whereas if l equals p, then m must be of the form

m =
n∑
i=1

miPi,

where mi ≥ 2.
Because we want the greatest possible number of rational places for the field L,

and because of the formula
N(L) = l|S|+ r

(where S is the set of rational places of K which split in L and r is the number
of rational places in the support of fL/K), it seems reasonable to start from a field
K which itself has many rational points compared to its genus. In this way, we
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will find curves with many points and their equations recursively: we start from the
projective line or a maximal3 elliptic curve, compute all its ‘best’ coverings reaching
or improving a lower bound in www.manypoints.org, and start the process again
on these coverings, and so on. We summarize the process in Algorithm 1 below.
Note that a reasonable restriction, especially when the size of the constant field
increases, could be to take only conductors with places of degree 1 in their support.

Algorithm 1 Good Abelian Covering
Input: A function field K/Fq, a prime l, an integer G.
Output: The equations of all cyclic extensions of K of degree l and genus less than

G whose number of Fq-rational points improves the best known records.
1. Compute all the moduli of degree less than B = (2G−2− l(2g(K)−2))/(l−1)

using Proposition 5.
2. for each such modulus m do
3. Compute the ray class group Picm modulo m.
4. Compute the set S of subgroups of Picm of index l.
5. for every s in S do
6. Compute the genus g and the number of rational places n of the class field

L of s.
7. if n is greater or equal to the known record for a genus g curve defined

over Fq then
8. Update n as the new lower bound on Nq(g).
9. Compute and output the equation of L.

10. end if
11. end for
12. end for

The complexity of the algorithm is linear in the number of fields (or pairs of
divisors and subgroups) we need to consider. The total number of divisors of
degree bounded by B is roughly O(qB) since this is the estimate for the number of
irreducible polynomials of degree bounded by B already. The number of subgroups
to consider depends on the structure of the ray class group. For tamely ramified
extensions, the group is the extension of the divisor class group by the product of
the multiplicative groups of the divisors (modulo constants), so the number of cyclic
factors depends on the number of places such that l|qdegP −1. For wild extensions,
the number of ramified places provides the same information. In the wild case, the
number is bounded by B/2, so the total number of fields to investigate is roughly
O(qB · qB/2). For each pair we have to compute the genus and the number of
rational places. The computation of the genus can be seen to run in time quartic
in the number of (potentially) ramified places: for each place we need to check if it
divides the conductor. This test is done by some Z-HNF computation of a matrix of
dimension depending on the total number of places again. The number of rational
places requires to compute discrete logarithms in the divisor class group for every
rational place of the base field. Assuming a small degree, this depends linearly on
the number of ramified places.

3We call a curve of genus g defined over Fq maximal if no genus g curve defined over Fq has
more points. This number of points is denoted Nq(g).

www.manypoints.org
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To summarize: the total complexity is essentially exponential in the genus bound,
thus limited in scope.

Remark 6. It is possible to extend the algorithm to coverings of non-prime degrees,
to include Artin-Schreier-Witt extensions for example, and this is what has been
implemented in Magma. The genus and the conductor can then be computed using
techniques from [HPP03].

4. Results

We now present the results we have obtained. We have restricted to the case of
F2. The computations have been performed with Magma, thanks to a Class Field
Theory library implemented by the second author. The results are summarized in
the table below. The notations are as follows: g0 is the genus of the base curve and
g and N are the genus and the number of rational points of the abelian covering
respectively. The Oesterlé bound on the number of rational points of a genus g curve
defined over Fq corresponds to the “OB” column. The conductor of the covering is
added in the column “f”: in this column, niPi means that there is a place of degree
i occurring in the conductor with weight ni. The Galois group of the covering is
G, the number of totally split places is |S|, the number of totally ramified places is
|T | and the number of non-totally ramified places is |R|. When the result has been
obtained using a non-maximal base curve, we denote the corresponding genus “g′0”
(see below for the equations of the base curves we have used). Note also that several
results have been obtained by more than one means; however, we have entered in
the table only the data corresponding to the smallest base genus. We have used
the 7 following maximal curves over F2 as base curves whose equations have been
computed by Algorithm 1 (the genus of the i-th curve is i):

(1) y2 + y − x3 − x
(2) y2 + (x3 + x+ 1)y + x5 + x4 + x3 + x
(3) x3y + x2y2 + x+ x2 + y3 + y
(4) y4 + (x+ 1)y2 + (x3 + x)y + x7 + x3

(5) y4 + (x2 + x+ 1)y2 + (x2 + x)y + x7 + x6 + x5 + x4

(6) y4 + (x6 + x5 + x4 + 1)y2 + (x7 + x4 + x3 + x2)y + x11 + x10 + x3 + x2

(7) y4 + (x9 +x7 +x6 +x5 +x4 +x3 +x2)y2 + (x11 +x9 +x8 +x7 +x5 +x4)y+
x14 + x12 + x11 + x7

We have also used the following 7 base curves whose number of rational points
is Nq(g)− 1 (the genus of the i-th curve is again i):

(1) y2 + xy + x3 + x
(2) y2 + y + x5 + x
(3) y4 + (x2 + x+ 1)y2 + (x2 + x)y + x6 + x5

(4) y4 + xy2 + (x+ 1)y + x5 + x4 + x3 + x2

(5) y4 + (x3 + 1)y2 + (x4 + x2)y + x9 + x5

(6) y4 + (x3 + x+ 1)y2 + (x3 + x)y + x9 + x8 + x5 + x4

(7) y4 + x7y2 + (x7 + 1)y + x5 + x

At last, we mention that the average bound on the degree of the possible con-
ductors we have tested was 14. The results are summarized in Table 1.

Due to the size of the equations, we only give an explicit model for the maximal
curves of genus 14, 17 and 24 that we have found:
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(1) y8 + (x10 + x8 + x6 + x4 + x3 + x)y6 + (x17 + x15 + x9 + x7 + x3 + x)y5 +
(x28 + x23 + x22 + x19 + x18 + x16 + x14 + x12 + x11 + x10 + x9 + x7 + x5 +
x4 +x2 +x+ 1)y4 + (x31 +x29 +x15 +x13 +x3 +x)y3 + (x40 +x37 +x36 +
x30 +x24 +x21 +x20 +x14 +x12 +x9 +x8 +x2)y2 +(x47 +x45 +x39 +x37 +
x33 +x29 +x23 +x21 +x19 +x15 +x11 +x9 +x5 +x3)y+x60 +x58 +x53 +
x51 +x49 +x47 +x46 +x45 +x44 +x43 +x41 +x38 +x36 +x32 +x31 +x29 +
x27 +x26 +x23 +x22 +x20 +x18 +x15 +x14 +x13 +x10 +x9 +x8 +x7 +x5;

(2) y8+(x20+x13+x10+x9+x2)y4+(x26+x24+x22+x19+x18+x17+x13+x11+
x10 +x4)y2 +(x27 +x25 +x20 +x19 +x18 +x16 +x14 +x13 +x11 +x7)y+x33 +
x31+x30+x28+x27+x26+x25+x24+x22+x21+x20+x16+x12+x10+x9+x8;

(3) y16 + (x18 + x17 + x15 + x14 + x10 + x8)y12 + (x28 + x27 + x26 + x22 + x21 +
x14)y10 +(x31 +x30 +x29 +x27 +x26 +x25 +x23 +x19)y9 +(x48 +x43 +x39 +
x38+x37+x34+x33+x32+x31+x30+x29+x28+x27+x25+x23+x22+x21+
x20 +x18)y8 +(x48 +x47 +x46 +x40 +x34 +x33 +x32 +x26)∗y6 +(x51 +x50 +
x49 +x43 +x39 +x38 +x37 +x31)y5 +(x72 +x71 +x70 +x69 +x68 +x67 +x65 +
x59+x58+x56+x51+x49+x47+x45+x42+x41+x40+x38+x36+x34+x33+
x31 +x30 +x28)y4 +(x57 +x56 +x55 +x48 +x47 +x41)y3 +(x82 +x81 +x77 +
x76+x75+x73+x72+x69+x68+x67+x64+x61+x58+x57+x55+x54+x53+
x50 +x49 +x48 +x45 +x44 +x40 +x39 +x38 +x37 +x36 +x34)y2 +(x85 +x84 +
x81+x77+x75+x74+x72+x71+x70+x69+x68+x65+x63+x62+x60+x59+
x58 +x57 +x55 +x54 +x53 +x50 +x48 +x46 +x44 +x42 +x41 +x39)y+x108 +
x97 +x96 +x95 +x91 +x90 +x88 +x87 +x86 +x83 +x82 +x81 +x78 +x76 +
x75 +x72 +x70 +x69 +x68 +x64 +x63 +x58 +x55 +x53 +x52 +x51 +x50 +x46.

g N -OB g0 f G |S| |T | |R|

14 16 4 2P7 Z/2Z 16 0 0

17 18 2 4P1 + 6P1 Z/2Z⊕ Z/2Z 16 2 0

24 23 4′ 2P1 + 4P1 + 2P2 Z/2Z⊕ Z/2Z 20 1 2

29 26−27 4 4P1 + 8P1 Z/2Z⊕ Z/2Z 24 2 0

41 34−35 3′ 4P1 + 4P1 Z/2Z⊕ Z/4Z 32 2 0

45 34−37 2 4P1 + 8P1 Z/2Z⊕ Z/4Z 32 2 0

46 35−38 3 3P1 + 8P1 Z/2Z⊕ Z/4Z 32 1 2

Table 1. New results over F2

Remark 7. Since the article has been written, a preprint of Karl Rökaeus has
appeared in which he undertakes similar computations over the finite fields of size
2, 3, 4 and 5 (see [Rök12]). Over F2 he recovers the genus 17 record, and improves
our genus 45 bound to 36 points (he also wrote us that he found a genus 46 curve
with 36 points).
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Remark 8. As mentionned above, we have restricted the search to F2. However,
a curve of genus 11 with 21 points has been found over F3 while testing the code.
It is a degree 2 cover of the genus 4 maximal curve defined by

C : y4 + 2y2 + x6 + x4 + x2.

With notations as above, the conductor is of the form P1 + P1 + P1 + P5. The
resulting curve has equation as follows:
C ′ : y8 + (2x10 + x9 + 2x7 + x6 + 2x5 + 2x4 + x3 + x2)y6 + (2x20 + 2x19 + 2x18+

x17 + x16 + x15 + 2x14 + 2x12 + 2x11 + x10 + 2x9 + 2x8 + x7 + 2x6 + x4)y4+
(x30 + 2x28 + x24 + x23 + 2x22 + x21 + x20 + 2x19 + x18 + x17 + 2x16 + x15+
x14 + 2x13 + x11 + x9 + x8 + 2x7)y2 + x40 + x39 + 2x37 + x35 + 2x32 + x31+
x30 + x29 + 2x28 + 2x22 + 2x21 + x19 + 2x17 + x14 + 2x13 + 2x12 + 2x11 + x10.
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13(1):33–39, 1977.

[HPP03] Florian Hess, Sebastian Pauli, and Michael E. Pohst. Computing the multiplicative
group of residue class rings. Math. Comp., 72(243):1531–1548 (electronic), 2003.

[Lan94] Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1994.

[Lan02] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag,
New York, third edition, 2002.

[Lau96] Kristin Lauter. Ray class field constructions of curves over finite fields with many rational
points. In Algorithmic number theory (Talence, 1996), volume 1122 of Lecture Notes in
Comput. Sci., pages 187–195. Springer, Berlin, 1996.

[Lau99a] Kristin Lauter. Deligne-Lusztig curves as ray class fields. Manuscripta Math., 98(1):87–
96, 1999.

[Lau99b] Kristin Lauter. A formula for constructing curves over finite fields with many rational
points. J. Number Theory, 74(1):56–72, 1999.

[Mil11a] J. S. Milne. Algebraic number theory (v3.03), 2011. Available at www.jmilne.org/math/.
[Mil11b] J.S. Milne. Class field theory (v4.01), 2011. Available at www.jmilne.org/math/.
[Neu99] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathema-

tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by
Norbert Schappacher, With a foreword by G. Harder.

[NX01] Harald Niederreiter and Chaoping Xing. Rational points on curves over finite fields: the-
ory and applications, volume 285 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2001.



14 V. DUCET AND C. FIEKER

[Rök12] Karl Rökaeus. New curves with many points over small finite fields. 2012. Available at
”arXiv:1204.4355”.

[Sch36] H.L. Schmid. Zur Arithmetik der zyklischen p-Körper. Journal für die reine und ange-
wandte Mathematik, 176:161–167, 1936.

[Ser83] Jean-Pierre Serre. Sur le nombre des points rationnels d’une courbe algébrique sur un
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