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Abstract

In this thesis, two algorithms are proposed to find function fields with many rational
places. These algorithms rely on the main theorem of class field theory, which tells us
that there exists a functorial bijection between finite index subgroups of the idèle class
group and finite extensions of a function field. Combining this with knowledge of the
splitting behaviour of places in finite extensions gives one algorithm using unramified
extensions and a second using ramified extensions. Running the first algorithm over
genus 4 hyperelliptic function fields and the second over genus 2 hyperelliptic function
fields, both over Fp with 3 ≤ p ≤ 13 prime, gives 51 results that are improvements to
the bounds currently stated on manypoints.org.

manypoints.org
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Introduction

An important open problem in arithmetic geometry is the following. Given an algebraic
curve C over a finite field k, what is the maximal number of k-rational points that this
curve can have? This question first sparked the interest of mathematicians almost a century
ago, with Hasse proving a bound on the number of rational points of an elliptic curve in
1936 ([Has36]). Since then, many mathematicians have tried to answer this question, and
considerable progress has been made over the years. However, for many cases, the answer
is still unknown.

We will see that the number of rational points of a curve C is bounded above and below
by the cardinality of the finite field and the genus of the curve. We will therefore denote by
Ng(q) the maximal number of rational points that a curve C with genus g over Fq can have.
For each finite field Fq with q ≤ 100 and genus g ≤ 50, a list of the intervals in which this
maximum can lie is published on manypoints.org. We see that for only a few combinations
of g and q, Ng(q) the answer is known, meaning that there no longer exists an interval
in which the maximum can lay. The purpose of this thesis is to sharpen these intervals,
thereby improving the currently best known bounds. We will call such an improvement of
the current bounds a record.

Upper bounds on Ng(q) are very difficult to improve, since one needs to show that for
all curves of a certain genus over Fq, this is the maximal number of points. On the other
hand, to improve a lower bound M on Ng(q), it suffices to find one curve that has at least
M +1 rational points. This is what we will do in this thesis. We use an equivalence relation
between curves with rational points and function field with rational places, so that we can
use algebraic statements rather than geometric ones.

One option to find such records would be to simply check all possible function fields of
a certain genus. However, a little investigation tells us that as soon as we reach function
fields with genus larger than 5, we have not yet found a canonical embedding in projective
space for all curves, meaning that we do not know how to construct all types of function
fields. For each type of function fields that we do know, the amount of function fields of
that type grows exponentially with the genus. Moreover, checking the number of rational
places of a function field is quite a hard task, computationally speaking. We will therefore
have to choose a more advanced path on our quest for new records.

In this thesis we use class field theory to find such a path. Class field theory gives an
isomorphism between subgroups of the idèle class groups of a function field K and the Galois
groups of finite abelian extensions of K. Knowledge of the Galois group will give us knowl-
edge of the splitting behaviour of rational places, and therefore of the number of rational
places of the extension field, as we will see in Chapter 1. Using this isomorphism, we can
state the number of rational places of an extension field using only very little information.
This enables us to quickly see which field extensions might give us new records, and which
will not. We will illustrate a more elementary way to use this knowledge in Chapter 2, using
unramified extensions, and a more advanced one in Chapter 5, using ramified extensions.
Together, these algorithms provided 51 new records, and we believe that many more can be
found when the advanced algorithm is applied to a wider range of function fields.

manypoints.org
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We will now give an overview of the material that will be covered in this thesis.
In Chapter 1, we will set up all necessary background information on function fields. We will
start by introducing valuation theory, and see how the notion of an algebraic function field
follows naturally. Once the basics of function fields are covered, we will start investigating
extensions of function fields. As Galois extensions are essential to our construction, we will
spend some time looking at the splitting behaviour of places under Galois extensions and
briefly cover infinite Galois theory. We will then give a concise overview of the relation
between the category of algebraic curves with rational points and that of algebraic function
fields with rational places. We end our first chapter by introducing local fields and idèles,
which will be of great importance when looking into class field theory in Chapter 4.

Once we know enough about function fields and their abelian extensions, we illustrate
how we can use this knowledge to construct an algorithm that finds function fields with
many rational places in Chapter 2. We will introduce one black box, Theorem 2.17, which
tells us that there exists an isomorphism between the degree zero divisor class group of a
function field and the Galois group of its maximal abelian extension in which one rational
place splits completely. Combining this with the knowledge of field extensions from Chapter
1, we can create an algorithm that gives us unramified field extensions with many rational
places. Applying this algorithm to genus four hyperelliptic function fields already gives us
26 records (see Table 1).

To prove the black box used in Chapter 2 and create an algorithm that uses ramified
extensions to find new records, we need to learn more about group cohomology. The goal
of Chapter 3 is to gain enough knowledge about (Tate) cohomology groups to develop the
theory of class fields in Chapter 4. We will cover the general definitions of group cohomol-
ogy, introduce Tate cohomology groups and look at subgroup maps. We finish this chapter
by looking into cup products, which are crucial for class field theory.

Class field theory essentially consists of one important theorem, that gives an isomor-
phism between different cohomology groups, and some additional theorems that help us
understand the structure of this isomorphism. In Chapter 4, we will work towards proving
that there exists an isomorphism between finite index subgroups of the idèle class group
of a function field, and the Galois groups of finite abelian extensions. To fully understand
this theorem, we have to first cover abstract and local class field theory. At the end of this
chapter we will have a thorough understanding of the relation between idèle class groups
and Galois groups, which is exactly what we need for our last chapter.

We will start the final chapter of this thesis by proving the black box introduced in
Chapter 2. We will then go through a similar process to construct an algorithm that finds
function field with many rational places by looking at ramified extensions, which will give
us 25 more records (see Table 2). We will finish this thesis by discussing some technicalities
and limitations of this algorithm, as well as providing suggestions for future research.



3

1 Function Fields

The goal of this thesis is to find function fields with many rational points. In this chapter,
we will set up all the preliminary information on function fields that will be needed to define
an algorithm in the next chapter. We start with discrete valuations, as they induce valued
fields. We will set up the theory of places, divisors, and define the genus of a function
field. In the next chapter, we will construct function fields with many rational places by
looking at abelian extensions of low genus function fields. It is therefore necessary and very
informative to look into some theory of field extensions, both general extensions and Galois
extensions. It is here that we will encounter Hurwitz’ genus formula and Dedekind’s different
theorem, as well as some theorems that tell us more about the splitting behaviour in Galois
extensions. We then explain the correspondence between curves with rational points and
function field with rational places. We will set up the necessary definitions and tools, but
refer the reader to other sources for the full proofs and background. Lastly, we will look
into completions of global fields and define the idèle class group, which we will encounter
again in Chapter 4. After those sections, we will have enough knowledge of function fields
and their places to create an algorithm that uses unramified extensions to find new function
fields with many places.

1.1 Valuations, places and divisors

In this section we will go through the basic concepts of function fields. We will define what
a function field is and look at some of its properties. Although we are mainly interested in
function fields over finite fields, the theory in this chapter holds for any perfect field k. We
start with some basic definitions and facts about valuations and their maximal ideals, which
we will call places. We will later see that rational points on curves correspond to rational
places of function fields. Therefore, these places will play a key role in the rest of this thesis.
We start by defining valuations and places in a general setting, which will be useful when
we look at local fields in Section 1.5.

Definition 1.1. Let K be a field. A discrete valuation on K is a map v : K∗ → Z such
that

1. v is a surjective homomorphism of additive groups (meaning v(x · y) = v(x) + v(y));

2. v(x+ y) ≥ min(v(x), v(y)).

We set v(0) = +∞ to extend this map to all of K.

Let K be a field and v a map satisfying the above conditions. We call the pair (K, v) a
valued field.

Definition 1.2. Let (K, v) be a valued field. We define the following sets:

OK = {x ∈ K | v(x) ≥ 0}, pK = {x ∈ K | v(x) > 0}, UK = {x ∈ K | v(x) = 0}.

Definition 1.3. A discrete valuation ring is a principal ideal domain with a unique nonzero
prime ideal.

Proposition 1.4. Let (K, v) be a valued field. Then OK is a discrete valuation ring with
unique prime ideal pK .
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Proof. See [Ser13, Proposition 1.1.1].

We will now define the kind of valued fields that will be our main objects in this thesis.

Definition 1.5. Let k be a perfect field. An algebraic function field K/k of one variable
over k is a finite algebraic extension of k(x) where x ∈ K is some element transcendental
over k. A function field of the type K = k(x) is called a rational function field.

Definition 1.6. Let K/k be an algebraic function field. The set

k̃ = {z ∈ F | z is algebraic over k}

is the field of constants of K/k. If k = k̃ then K is called the full constant field of K. From
now on, when we write K/k we always mean that k is the full constant field of K.

Let us look at two examples of function fields.

1. Let k be F7, the finite field with 7 elements, and let f ∈ k[x] be an irreducible
polynomial of positive degree. Then the field K = k(x)[y]/(y2 − f) is an algebraic
function field. It is a degree 2 extension of the rational function field k(x) and has
constant field k.

2. Let k again be the finite field F7. Then the extension k(x)[α] with α algebraic over
k, such that α2 + α + 1 = 0 is also an algebraic function field. This time we see that
the constant field of the function field is no longer F7, but is now F49, as there are 72

elements of the form a+ b ·α, a, b ∈ F7 that are algebraic over k. We have thus again
found a rational function field, but now over the constant field F49 rather than over
F7.

In general, an algebraic function field can often be written as k(x, y), where x is tran-
scendental over k and ϕ(y) = 0 for some irreducible polynomial ϕ(T ) ∈ k(x)[T ]. Recall
that when k is a perfect field, every irreducible polynomial over k is separable. We call the
polynomial ϕ the defining equation of the function field.

For any algebraic function field K, there exist discrete valuations v. For example, for
the rational function field k(x), we have the following valuations.

1. For each monic irreducible polynomial h(x) ∈ k(x), we have the finite valuation vh(x)

which sends z = f(x)
g(x) ∈ k(x) to n1−n2 ∈ Z where n1 is the maximal integer such that

hn1 |f and n2 the maximal integer such that hn2 |g.

2. Moreover, there exists an infinite valuation v∞ that sends an element z = f(x)
g(x) to the

integer deg(f(x))− deg(g(x)).

Definition 1.7. Let K be an algebraic function field. We call the unique nonzero prime
ideal of a valuation v of K a place. The valuation ring corresponding to the place p is written
as Op. An element t ∈ p such that p = tOp is called a local parameter or a uniformizer for
p. We define the set of all places of K to be PK .

For a rational function field, this gives us the following places. For each monic irreducible
polynomial h(x) ∈ k(x) we have the finite place

ph(x) = {f(x)

g(x)
∈ k(x) | h(x)|f(x), h(x) - g(x)}
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and moreover there is a unique infinite place

p∞ = {f(x)

g(x)
∈ k(x) | deg(f(x)) < deg(g(x))}.

[Sti09, Theorem 1.2.2] tells us that those are the only places of a rational function field.

Definition 1.8. As a place p is a maximal ideal, Op/p is a field. We define K̃p = Op/p to

be the residue class field of p and define the degree of the place p to be deg(p) = [K̃p : k]. A
place of degree 1 is called a rational place of K. For x ∈ Op we denote by x(p) the residue

class of x in K̃p.

Proposition 1.9. Let K be an algebraic function field and p a place of K. Then the degree
of p is a finite integer.

Proof. See [Sti09, Proposition 1.1.15].

Definition 1.10. Let z ∈ K and p a place of K. Then we say that p is a zero of z is
vp(z) > 0 and that p is a pole of z if vp(z) < 0.

One might now wonder under which circumstances a function field has places, and how
many places it has. The following proposition tells us that a function field always has at
least two places.

Proposition 1.11. Let K/k be a function field, and let z ∈ K be transcendental over k
(which is equivalent to z ∈ K\k as k is the full constant field of K). Then z has at least
one and at most finitely many zeroes and poles.

Proof. See [Sti09, Corollary 1.1.20 and 1.3.4]

The next theorem tells us something about the independence of valuations. It is a very
handy tool when working with algebraic function fields, and is often used in proofs in [Sti09].
For example, it can be used to show that every function field has in fact infinitely many
places.

Theorem 1.12. [Weak approximation theorem] Let K/k be a function field, p1, ..., pn ∈ PK
pairwise distinct places, x1, .., xn ∈ K, r1, .., rn ∈ Z. Then there is an x ∈ K such that
vpi(x− xi) = ri for all 1 ≤ i ≤ n.

Proof. See [Sti09, Theorem 1.3.1].

Corollary 1.13. Every function field has infinitely many places.

Proof. Suppose not, then by the weak approximation theorem there exists an element x ∈ K
such that vpi(x) > 0 for every place pi. Since every element of k has no zeroes at all, we see
that x must be transcendental over k. Now Proposition 1.11 gives a contradiction.

We also have the following stronger version of Theorem 1.12, not surprisingly called the
strong approximation theorem, which we will need in Chapter 5.

Theorem 1.14. [Strong approximation theorem] Let K/k be a function field, A a proper
non-empty subset of PK and p1, ..., pn ∈ A pairwise distinct places. Then for any given
x1, .., xn ∈ K, and integers r1, .., rn ∈ Z, there is an x ∈ K such that

vpi
(x− xi) = ri for all 1 ≤ i ≤ n, vp(x) ≥ 0 for all p ∈ A\{p1, ..pn}.
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Proof. See [Ros02, Theorem 6.13].

Definition 1.15. Let K/k be a function field. Then the divisor group of K is defined as
the additively written free abelian group generated by the places of K. The divisor group
is denoted by Div(K) and its elements are called divisors. We write

D =
∑
p∈PK

npp with np ∈ Z and np = 0 for almost all places p.

We define the sum of two divisors D1 =
∑
npp, D2 =

∑
mpp to be

D1 +D2 :=
∑

(np +mp)p.

We call the set of places for which np 6= 0 the support of D. If D = 1 · p then we say
that D is a prime divisor.

The following gives a partial ordering on the group of divisors.

Definition 1.16. Let K be an algebraic function field and let D1 =
∑
npp, D2 =

∑
mpp

be two divisors of K. We say that D1 ≥ D2 if np ≥ mp for all places p of K. Moreover, we
say that D is effective if D ≥ 0.

Definition 1.17. The degree of a divisor D is defined as
∑
np · deg(p). The divisors of

degree zero form a subgroup of the divisor group and are denoted by Div0(K).

The following proposition follows from the fact that over a perfect field, the greatest
common divisor of the degrees of the places is one.

Proposition 1.18. The map Div(K) → Z, sending each element
∑
npp to its degree∑

np · deg(p) is surjective.

Proof. See [Ros02, p.242]

Definition 1.19. Let K/k be a function field, then for any x ∈ K we denote by (x) the
divisor

(x) =
∑
p∈PK

vp(x)p.

We call such a divisor a principal divisor.

Proposition 1.20. Any principal divisor has degree zero. Moreover, let (x)0 =
∑

deg(p) ·p
with p running over all zeroes of x, and (x)∞ =

∑
deg(q) · q with q running over all poles

of x. Then
deg((x)0) = deg((x)∞) = [K : k(x)].

Proof. See [Sti09, Theorem 1.4.11].

Definition 1.21. The set Princ(K) = {(x) | 0 6= x ∈ K} is called the group of principal
divisors. As it is a subgroup of the group of all divisors, we define the divisor class group
and the degree zero divisor class group to be the quotients

ClK =
Div(K)

Princ(K)
and Cl0K =

Div0(K)

Princ(K)
.

We write D1 ∼ D2 when D1 and D2 are in the same equivalence class, meaning that
D1 = D2 + (x) for some x ∈ K. We denote the equivalence class of a divisor D by [D].
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Proposition 1.22. Let K be an algebraic function field. Then Cl0K is a finite group.

Proof. See [Sti09, Proposition 5.1.3].

Definition 1.23. Let D be a divisor of the function field K/k, then we define

L(D) = {x ∈ K | (x) +D ≥ 0}.

We see that this is a k-vector space, as vp(x+y) = min(vp(x), vp(y)) whenever vp(x) 6= vp(y)
and vp(ax) = vp(a) + vp(x). The dimension of L(D) as a k-vector space is denoted by l(D).

Proposition 1.24. There exists a positive integer γ ∈ N such that for all divisors D of K
we have that

deg(D)− l(D) ≤ γ.

Proof. See [Sti09, Proposition 1.4.14].

This allows for the following definition.

Definition 1.25. The genus g of a function field K/k is defined as

g = max{deg(D)− l(D) + 1 | D ∈ Div(K)}.

Proposition 1.26. The genus of a function field K/k is a non-zero integer.

Proof. Let x ∈ k, then x has no zeroes or poles. Therefore, the prime divisor (x) = 0
so deg((x)) = 0. By Proposition 1.11 we see that there is no element z ∈ K\k such
that (z) + (x) ≥ 0. On the other hand, for every other constant x′ ∈ k it is true that
(x′) + (x) ≥ 0 by Proposition 1.20. We thus see that l((x)) = 1, and so we have that
g ≥ deg((x))− l((x)) + 1 = 0.

Proposition 1.27. Let k be a finite field. Then the rational function field k(x)/k has
genus 0.

Proof. See [Sti09, Example 1.4.18].

This tells us that any non-trivial function field has positive genus. In general, it can be
very difficult to find the genus of a function field, especially for function fields with larger
genera. We do have the following theorem, due to Riemann.

Theorem 1.28. Let K be an algebraic function field of genus g. Then there exists an
integer c, depending only on K, such that l(A) = deg(A) + 1− g whenever deg(A) ≥ c.

1.2 Algebraic extensions of function fields

The goal of this thesis is to create global function fields with many rational places. We will
find these new function fields by looking at extensions of other function fields. In particular,
we are interested in the splitting behaviour of places and the genus of the extension field.
In what follows, we will assume k is a perfect field (which is true for any finite field) and
moreover if we write K/k we assume k is the full constant field of K. When we say K ′/k′

is an algebraic extension of K/k we mean that K ⊆ K ′ is an algebraic field extension and
k ⊆ k′.
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Definition 1.29. For an algebraic field extension K ′/k′ of K/k we use the following defi-
nitions.

1. We say K ′/K is a constant field extension if K ′ = Kk′;

2. We say K ′/K is a geometric field extension if k′ = k;

3. We say K ′/K is a finite extension if [K ′ : K] <∞.

From this definition we see that any finite algebraic extension K ′/k′ of K/k can be seen
as the compositum of a constant and a geometric extension. As these extensions behave
quite differently, we will state some properties of constant extensions at the end of this
section. By analyzing the behaviour of places in such extensions we will get one step closer
to our goal.

Proposition 1.30. Let K ′/k′ be an algebraic extension of K/k. Let p be a place of K and
q a place of K ′. The following three statements are equivalent.

1. p ⊆ q;

2. Op ⊆ Oq;

3. there exists an integer e ≥ 1 such that vq(x) = e · vp(x) for all x ∈ K.

Proof. (i) → (ii). Assume p ⊆ q but Op 6⊆ Oq. Then there exists a x ∈ K with vp(x) ≥ 0
and vq(x) < 0. Let t be a uniformizer for p then vp(t) = 1 and p ⊆ q so vq(t) = r with
r ≥ 1. Then we see that

vp(xrt) = r · vp(x) + vp(t) ≥ 1

vq(xrt) = r · vq(x) + vq(t) ≤ r · −1 + r = 0.

We thus see that this implies p 6⊆ q which is in contradiction with (i).
(ii) → (iii). We start by noting that if u ∈ K such that vp(u) = 0, we also have that

vq(u) = 0. Namely, if vp(u) = 0 then vp(u−1) = 0 so both u, u−1 ∈ Op ⊆ Oq, and thus
vq(u) = 0. We use this as follows. Choose a uniformizer t ∈ K and set vq(t) = e. Since
p ⊆ q we see that e ≥ 1. Let x ∈ K nonzero and set vp(x) = r. Then vp(t−rx) = 0 and

vq(x) = vq(t−rx) + vq(tr) = 0 + rvq(t) = vp(x) · e.

(iii) → (i). If vp(x) ≥ 1 then we see that vq(x) ≥ e · 1 ≥ 1 and therefore that p ⊆ q.

Definition 1.31. If the statements in Proposition 1.30 hold, we say that q ∈ PK′ lies over
p ∈ PK (and write q|p). p is also called the restriction of q to K.

The following is an immediate corollary of Proposition 1.30.

Corollary 1.32. Let K ′/K be an algebraic extension, and let q|p. Then

p = q ∩K, Op = Oq ∩K.

Proof. Proposition 1.30 tells us that p ⊆ q and moreover that vq(x) = e ·vp(x) for all x ∈ K.
Therefore we see that p = {x ∈ K | vp(x) > 0} consists exactly of the elements of K such
that vq(x) > 0. From this it follows that p = q ∩K and analogously Op = Oq ∩K.
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Proposition 1.33. Let K ′/K be an algebraic extension, and let q|p. Then the residue class

field K̃p is a subfield of K̃ ′q.

Proof. We see from Proposition 1.32 that Op ⊆ Oq. We define a map from Op/p → Oq/q
by sending the class of x modulo p to the class of x modulo q. This is well-defined, since if
two elements x, y ∈ Op are in the same class modulo p, then since p ⊆ q they are definitely
in the same class modulo q. Moreover, this map is injective since if x, y are not in the same
class modulo p, they cannot be in the same class modulo q since q∩K is all of p. From this
it follows that K̃p is a subfield of K̃ ′q.

Definition 1.34. The integer e such that vq(x) = e · vp(x) is called the ramification index
of q over p and is denoted by e(q|p). If e(q|p) > 1 we say that q is ramified (over p), if not

q is unramified (over p). We define f(q|p) = [K̃ ′q : K̃p] to be the residue degree or relative
degree of q over p. We say that a place p splits completely in K ′/K if there are exactly
[K ′ : K] places above p.

The residue degree tells us how much the constant field extends locally as we have the
following equality:

f(q|p) = [K̃ ′q : K̃p] =
[K̃ ′q : k′]

[K̃p : k]
· [k′ : k] =

deg(q)

deg(p)
· [k′ : k].

Moreover, we have the following important theorem, which tells us how ramification index
and residue degree are related.

Theorem 1.35 (Fundamental equality). Let K ′/k′ be a finite extension of K/k. Let p be
a place of K, and let q1, ..., qm be all the places of K ′ lying over p. Then

m∑
i=1

e(qi|p) · f(qi|p) = [K ′ : K].

The fundamental equality tells us several things. First of all, we see that there is at least
one and at most [K ′ : K] places lying above each place p of K. Moreover, we see that when
the places qi above a place p have high ramification index or high residue degree, there can
only be a small number of places above p. We will later see that this equality becomes even
more useful in Galois extensions, since then the ramification indices and residue degrees of
all places qi above a place p are equal.

When looking at field extensions, we are not only interested in the splitting behaviour
of places, but also in the behaviour of the genus. We will now build the foundation for
Hurwitz’ genus formula, which gives us the genus of a finite separable extension K ′/k′ in
terms of the genus of the function field K/k and the ramification behaviour. We will first
state some general properties of automorphisms of field extensions, that will be needed
multiple times. In the next subsection we will look into Galois extensions, which is when
the following properties will be extremely important.

Proposition 1.36. Let K ′/K be an algebraic extension of function fields, p ∈ PK and
q ∈ PK′ lying over p. Let Aut(K ′/K) denote the automorphism group of K ′/K, which is
the set of all automorphisms of K ′ where the elements of K stay fixed, and let σ be an
element of the automorphism group of K ′/K. Then we have that σ(q) = {σ(x) | x ∈ q} is
a place of K ′ such that:
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1. σ(q)|p;

2. vσ(q)(y) = vq(σ−1(y)) for all y ∈ K ′;

3. e(σ(q)|p) = e(q|p), f(σ(q)|p) = f(q|p).

Proof. (i). We want to show p ⊆ σ(q). Since σ(q) = {σ(x) | x ∈ q} we see that if p ⊆ q
then σ(p) ⊆ σ(q) but since σ(p) = p by definition of the automorphism group this proves
our case.

(ii). Let y ∈ K ′ nonzero, then there exists z ∈ K ′ such that σ(z) = y. Let t be a
uniformizer for q, then z = tn · u for some u with vq(u) = 0. vq(u) = 0 implies that
u ∈ Oq\q, which means that σ(u) ∈ Oσ(q)\σ(q). From this it follows that vσ(q)(u) = 0 and
thus that vσ(q)(y) = vσ(q)(σ(z)) = vσ(q)(σ(tn)) = n = vq(z) = vq(σ−1(y)).

(iii). Choose a uniformizer t of p. Then we see that

e(σ(q)|p) = vσ(q)(t) = vq(σ−1(t)) = vq(t) = e(q|p).

An automorphism σ of K ′/K induces an isomorphism of the residue class field K̃ ′q onto

K̃ ′σ(q) given by σ(z + q) = σ(z) + σ(q). Since this is the identity on K̃p we have that

[K̃ ′q : K̃p] = [K̃ ′σ(q) : K̃p] and thus that f(q|p) = f(σ(q)|p).

We will now define two maps that send elements of an extension field K ′ to elements of
the ground field K.

Definition 1.37. Let K ′/K be a finite extension, choose an algebraic closure Ω of K
in which K ′ lies. Denote by σ1, ...σn the embeddings of K ′ into Ω, meaning the field
homomorphisms σ : K ′ → Ω such that σ(a) = a for all a ∈ K. Then the norm map and the
trace map are respectively given by

NK′/K(x) =

n∏
i=1

σi(x), TrK′/K(x) =

n∑
i=1

σi(x).

Definition 1.38. For p ∈ PK , let O′p be the integral closure of Op in K ′. We then define

Cp = {z ∈ K ′ | TrK′/K(z · O′p) ⊆ Op}

to be the complementary module over p.

Proposition 1.39. With the above notation we have the following.

1. Cp is an O′p-module;

2. There exists an element t ∈ K ′, depending on the place p, such that Cp = t · O′p;

3. If Cp = t · O′p then vq(t) ≤ 0 for all q|p and Cp = O′p for almost all places p ∈ PK .

Proof. See [Sti09, Proposition 3.4.2].

Definition 1.40. LetK ′/K be a field extension, p a place ofK andO′p as defined above. Let
Cp = t·O′p, then we define for every q|p the different exponent of q over p by d(q|p) = −vq(t).
Moreover, we define the different of K ′/K to be

Diff(K ′/K) =
∑
p∈PK

∑
q|p

d(q|p) · q.
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Theorem 1.41 (Hurwitz’ genus formula). Let K/k be an algebraic function field of genus
g and let K ′/K be a finite separable extension. Let k′ be the full constant field of K ′ and g′

the genus of K ′/k′. Then

2g′ − 2 =
[K ′ : K]

[k′ : k]
(2g − 2) + deg(Diff(K ′/K)).

Proof. See [Sti09, Theorem 3.4.13].

As the different plays an important role in Hurwitz’ genus formula, it can be very useful
to know a bit more about it. For the original definition, one needs to have information
about all the places of K and their splitting behaviour. Fortunately, Dedekind came up
with a very handy theorem.

Theorem 1.42 (Dedekind’s different theorem). Let K ′/K be a finite separable extension,
q a place of K ′ lying above p ∈ PK . Then we have that:

1. d(q|p) ≥ e(q|p)− 1;

2. d(q|p) = e(q|p)− 1 ⇐⇒ e(q|p) is not divisible by char(k).

Proof. See [Sti09, Theorem 3.5.1].

This yields the following corollary.

Corollary 1.43. Let K ′/K be a finite separable extension of function fields having the same
constant field. Let g be the genus of K, g′ the genus of K ′. Then g ≤ g′.

Proof. By Dedekind’s different theorem we have that d(q|p) ≥ 0 for all places p ∈ PK , and
therefore that deg(Diff(K ′/K)) ≥ 0. Plugging this in the Hurwitz’ genus formula then gives
the desired result.

One can apply Hurwitz’ genus formula to find the following result.

Theorem 1.44. Let K be a function field over a finite field k with cardinality 6= 2, given
as a finite extension of the rational function field k(x) by y2 − f(x), where f(x) is some
polynomial in k(x) of degree 2n+ 1 or 2n+ 2. Then K has genus n.

Proof. We start by noting that K is a degree 2 extension of the rational field k(x). Moreover,
k(x) has genus 0 by Proposition 1.27. Therefore, Hurwitz’ genus formula yields

2g′ − 2 = 2(0− 2) + deg(Diff(K/k(x)).

Now since K/k(x) is a degree 2 field extension, we know that the ramification index of all
places can be at most two. Dedekind’s different theorem tells us that d(q|p) = e(q|p)−1 ⇐⇒
e(q|p) is not divisible by the characteristic of k. This means that for hyperelliptic function
fields, the different consists of the sum of the ramified places.

Function fields of degree 2n + 1 are called imaginary hyperelliptic function fields, since
they have one place at infinity, and function fields of degree 2n + 2 are called real hyper-
elliptic function fields, as they have two places at infinity. When looking at an imaginary
hyperelliptic function field as an extension of a rational function field, we thus see that the
place at infinity p∞ of k(x) ramifies in the extension. On the other hand, for a real hyper-
elliptic function field we see that the place at infinity of k(x) splits. From this it follows
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that when the degree of f is 2n+ 1, we see that the ramified places consist of all the places
(x− xi), and the ramified place at infinity. When the degree of the polynomial f is 2n+ 2,
we see that the only ramified places are those of the form (x − xi) with xi a root of f(x)
(see also [Sti09, Proposition 6.2.3.c]). In both cases all places have ramification index 2, so
we see that the degree of the different is 2n+ 2. Therefore we have that

g′ = −1 +
1

2
deg(Diff(K/k(x))) = −1 +

2n+ 2

2
= n.

We will now state some properties of constant field extensions. As all field extensions
can be split up in a constant and non-constant part, knowledge about how constant field
extensions behave is needed when talking about general algebraic field extensions.

Proposition 1.45. In a constant field extension K ′ = Kk′ the following hold:

1. k′ is the full constant field of K ′;

2. K ′/K is unramified;

3. K ′/k′ has the same genus as K/k;

4. The residue class field is of a place q of K ′ is K̃ ′q = K̃pk
′.

Theorem 1.46. Let K be a function field over k = Fq and let Kn denote the constant
field extensions KFqn/Fqn . Then we have that p splits into gcd(n, degK(p)) places in Kn.
Moreover, we have for every place qi|p that

degKn
(qi) =

degK(p)

gcd(n,degK(p))
and f(qi|p) =

n

gcd(n, degK(p))
.

Proof. See [Ros02, Theorem 8.13].

The above theorem tells us that rational places in the ground field stay rational in the
extension field, as degK(p) = 1 in that case. Therefore, each rational place in the ground
field contributes exactly one rational place in the extension field, as these places stay inert.
Moreover, we see that the only other places that become rational places in the extension
field are those of degree dividing n. We thus have the following.

Proposition 1.47. Let K be a function field over k = Fq and let Kn denote the constant
field extension KFqn/Fqn . Denote by Br(K) the number of places of degree r of the function
field K. Then the number of rational places of the field extension Kn/K is

∑
d|n

d ·Bd(K).

1.3 Galois extensions

In this subsection we will look at special properties of Galois extensions.

Definition 1.48. Let L/K be a finite algebraic extension of function fields. Then we say
that L/K is Galois if the automorphism group of L/K consists of exactly [L : K] elements.

The following theorem tells us why Galois extensions are easier to work with than general
extensions.
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Theorem 1.49 (Main theorem of Galois theory for finite extensions). Let K ′/K be a finite
Galois extension. Then the maps

M 7→ H := Aut(K ′/M) and H 7→M := K ′H

yield an inclusion-reversing bijection between subfields K ⊆ M ⊆ K ′ and subgroups H of
the Galois group. The extension K ′/M is always Galois, and the extension M/K is Galois
if and only if H is a normal subgroup of G. Then Gal(M/K) ∼= G/H.

Proof. See [Sza09, Theorem 1.2.5].

This inclusion-reversing bijection will be of great importance for our algorithm in the
next chapter. It tells us that looking at subgroups of the Galois group is equivalent to looking
at subfields of a Galois extension. The goal of our algorithm is to find field extensions with
many rational places. We will do that by first constructing a very large field extension, and
then look at its subextensions. In the rest of this section we will investigate some properties
of the behaviour of those intermediate extensions. This will lead to a key theorem (Theorem
1.55) that is one of the building blocks of our algorithm.

Theorem 1.50. Let K ′/k′ be a Galois extension of K/k and q1, q2 ∈ PK′ above p. Then
there is some σ ∈ Gal(K ′/K) such that σ(q1) = q2, i.e. the Galois group acts transitively
on the places above p.

Proof. We start by noting that by Proposition 1.30 for two places q1, q2 over p we have that
for all x ∈ K,

vq1
(x) = 0 ⇐⇒ vp(x) = 0 ⇐⇒ vq2

(x) = 0.

Denote by G the Galois group of K ′/K and note that the norm map of an extension K ′/K
sends x ∈ K ′ to

∏
σ∈G

σ(x) ∈ K. Assume there is no σ ∈ G such that σ(q1) = q2. By the

weak approximation theorem, there exists an element z ∈ K ′ such that vq2(z) = 1 and
vqi

(z) = 0 for all places qi over p, qi 6= q2. This gives us:

vq1
(NK′/K(z)) = vq1

(
∏
σ∈G

σ(z)) =
∑
σ∈G

vq1
(σ(z)) =

∑
σ∈G

vσ−1(q1)(z) =
∑
σ∈G

0 = 0,

since there is no σ ∈ G such that σ(q1) = q2. On the other hand, we have that

vq1(NK′/K(z)) = vq1(
∏
σ∈G

σ(z)) =
∑
σ∈G

vq1(σ(z)) ≥ 1,

which is in contradiction with the fact that vq1
(x) = 0 ⇐⇒ vq2

(x) = 0.

Corollary 1.51. Let q1, ..., qn be all the places above p ∈ PK . Then

1. e(qi|p) = e(qj |p) = e(p);

2. f(qi|p) = f(qj |p) = f(p);

3. e(p) · f(p) · n = [K ′ : K];

4. d(qi|p) = d(qj |p) = d(p).

Proof. The first three statements are an immediate corollary of the above theorem and
Proposition 1.36. For the last statement, see [Sti09, Corollary 3.7.2].
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We thus see that in a Galois extension, a place ramifies or splits at all places lying above
it in the same way. Therefore, if we know the splitting behaviour of one place above p, we
know this about all the places above it. This will be a very important feature of Galois
extensions and allows us to define the sets in the following definition. From now on we will
assume K ′/K is a Galois extension with Galois group G = Gal(K ′/K) and that q is a place
of K ′ lying above p ∈ PK .

Definition 1.52. We define the following groups

GZ(q|p) = {σ ∈ G | σ(q) = q}, GT (q|p) = {σ ∈ G | vq(σz − z) > 0 ∀z ∈ Oq}.

GZ(q|p) is called the decomposition group of q over p and GT (q|p) is called the inertia group
of q over p. The fixed field Z = Z(q|p) of GZ(q|p) is called the decomposition field, and the
fixed field T = T (q|p) of GT (q|p) is called the inertia field. Note that GT (q|p) ⊆ GZ(q|p).

Theorem 1.53. Let K ′/K be a Galois extension of function fields and let p be a place of
K, q be a place of K ′ lying above p. Then

(a) GZ(q|p) has order e(q|p) · f(q|p);

(b) The inertia group GT (q|p) is a normal subgroup of GZ(q|p) of order e(q|p);

(c) K̃ ′q/K̃p is a Galois extension. Moreover, Gal(K̃ ′q/K̃p) ∼= GZ(q|p)/GT (q|p).

Proof. (a). We use that the Galois group G of K ′/K acts transitively on the places above
p. Choose one place q above p and permutations σ1, ..., σr such that the σi(q) cover exactly
all of the r places above p. The set of σi then forms a complete coset of the representatives
of G/GZ . We can see this by noting that σ(q) is also a place lying above p, and GZ consists
exactly of those permutations that leave q fixed. Therefore we have that

[K ′ : K] = |Gal(K ′/K)| = r · |GZ |

and by the fundamental equality (Proposition 1.35) we get the statement of (a).

(b) +(c). Let σ ∈ GZ(q|p), and x, y ∈ Oq with x = y ∈ K̃ ′q. Then we see that

x− y ∈ q so σ(x)− σ(y) = σ(x− y) ∈ σ(q) = q and therefore σ(x) + q = σ(y) + q.

We thus have a well-defined homomorphism from GZ(q|p) to the automorphism group of

K̃ ′q/K̃p. Moreover, we see that the kernel of this map is GT (q|p) since

GT (q|p) = {σ ∈ Gal(K ′/K) | σ(x) = x for all x ∈ Oq}.

Since the kernel of a group homomorphism is a normal subgroup, this shows the first part of
(b). Now we claim that this map is surjective and that K̃ ′q/K̃p is Galois, see [Sti09, Theorem

3.8.2]. (Note that since k is perfect, K̃ ′q/K̃p is separable, say K̃ ′q = K̃p(u), so showing K̃ ′q/K̃p

is Galois means showing that K̃ ′q is the splitting field of the minimal polynomial of u.)

From these two claims it follow that the Galois group of K̃ ′q/K̃p is indeed GZ(q|p)/GT (q|p).
Moreover, we see that

f(q|p) = [K̃ ′q : K̃p] = |Gal(K̃ ′q/K̃p)|
= |GZ(q|p)|/|GT (q|p)|
= (e(q|p) · f(q|p))/|GT (q|p)|

and thus that |GT (q|p)| = e(q|p).
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Theorem 1.54. Let K ′/K be a Galois extension of function fields and let p be a place of K,
q be a place of K ′ lying above p. Let pZ denote the restriction of q to Z, pT the restriction
of q to T . Then we have the following field extensions and relations:

K ′ q (i) e(q|pT ) = e(q|p) = [K ′ : T ], f(q|pT ) = 1;

T pT (ii) e(pT |pZ) = 1, f(pT |pZ) = f(q|p) = [T : Z];

Z pZ (iii) e(pZ |p) = f(pZ |p) = 1.

K p

Proof. It follows from {id} ⊆ GT ⊆ GZ ⊆ G that K ⊆ Z ⊆ T ⊆ K ′.
(iii) Note that since Z is the fixed field of GZ(q|p), this means that Gal(K ′/Z) = GZ(q|p)

consists exactly of those permutations that leave q fixed, therefore GZ(q|pZ) = GZ(q|p).
Applying Theorem 1.54 (a) to both decomposition groups gives us

e(q|pZ) · f(q|pZ) = e(q|p) · f(q|p)

and therefore e(q|pZ) = e(q|p), f(q|pZ) = f(q|p). This leads us to conclude that e(pZ |p) =
f(pZ |p) = 1, which is the third statement. Since the Galois group acts transitively on the
places above pZ and we have Gal(K ′/Z) = GZ(q|p), we see that there is only one place q
over pZ since all elements of the Galois group send q to itself.

(i) Note that we have GT (q|p) = GT (q|pT ) by definition. Moreover, we defined f(q|p) =

[K̃ ′q : K̃p] so combining Theorem 1.54 (c) with (a) tells us that |GT (q|p)| = e(q|p) = e(q|pT )
where the last equality follows from applying the above to K ′/T . As Gal(K ′/T ) = GT (q|pT )
we can now conclude that [K ′ : T ] = e(q|p) = e(q|pT ) and therefore f(q|pT ) = 1.

(ii) This follows immediately from the fact that

e(q|p) = e(q|pT ) · e(pT |pZ) · e(pZ |p)

and similarly for f(q|p). Combining this with the above results gives us e(pT |pZ) = 1 and
f(pT |pZ) = f(q|p) = [pT : pZ ].

The above theorem tells us that ramification happens in the extension K ′/T , places stay
inert in T/Z, and they split in Z/K. Moreover, as a direct corollary of the above theorem
and the fundamental equality we see that the number of places q ∈ PK′ lying above a place p
of K is exactly [Z : K].

Theorem 1.55. Consider a Galois extension K ′/K of algebraic function fields, p ∈ PK
and q|p. For K ⊆M ⊆ K ′ let pM = q ∩M . Then:

(a) M ⊆ Z(q|p) ⇐⇒ e(pM |p) = f(pM |p) = 1, so p splits completely in M ;

(b) M ⊇ Z(q|p) ⇐⇒ q is the only place lying above pM ;

(c) M ⊆ T (q|p) ⇐⇒ e(pM |p) = 1;
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(d) M ⊇ T (q|p) ⇐⇒ pM is totally ramified in K ′/M .

Proof. All implications =⇒ are a direct corollary of the above theorem. We prove the inverse
implications below.

(a). Note that as e(pM |p) = f(pM |p) = 1, we see that e(q|pM ) = e(q|p) and f(q|pM ) =
f(q|p). Therefore, (a) of Theorem 1.53 tells us that |GZ(q|pM )| = |GZ(q|p)|. By definition
we have that GZ(q|pM ) ⊆ GZ(q|p) so we see that the two decomposition groups are equal.
This is possible only if M is a subset of the fixed field of GZ(q|p), and thus we have that
M ⊆ Z(q|p).

(b). When q is the only place lying above pM we see that GZ(q|pM ) = Gal(K ′/M),
since all elements of the Galois group send q to itself. On the other hand we have that
GZ(q|pM ) ⊆ GZ(q|p). Looking at their fixed fields gives

M = (K ′)Gal(K′/M) = (K ′)GZ(q|pM ) ⊇ (K ′)GZ(q|p) = Z.

(c). We know that GT (q|p) has order e(q|p) by Theorem 1.53. If e(pM |p) = 1 this means
that GT (pM |p) has order 1 and thus that GT (q|p) = GT (q|pM ). From this it follows that
M is fixed by all of GT (q|p) and thus that M ⊆ T .

(d).When q is totally ramified in K ′/M we see that e(q|pM ) = [K ′ : M ]. Since GT (q|pM )
has order e(q|pM ) we have |GT (q|pM )| = |Gal(K ′/M)|. On the other hand we have that
GT (q|pM ) ⊆ GT (q|p). Looking at their fixed fields gives

M = (K ′)Gal(K′/M) = (K ′)GT (q|pM ) ⊇ (K ′)GT (q|p) = T.

When looking at class formations in Chapter 4, we will also encounter some infinite
Galois groups. We will therefore briefly state the main theorem of infinite Galois theory
here. For proofs of the statements below, see [Sza09, Chapter 1.3]. Before we can do that,
we will need a few definitions.

Definition 1.56. An inverse system of groups (Gα, φαβ) consists of

1. A partially ordered set (Λ,≤) such that for all α, β ∈ Λ there is some γ ∈ Λ such that
α ≤ γ, β ≤ γ;

2. For each α ∈ Λ a group Gα;

3. For each α ≤ β a homomorphism φαβ : Gβ → Gα such that we have φαγ = φαβ ◦ φβγ
for all α ≤ β ≤ γ.

The inverse limit of this system is defined as the subgroup of the direct product
∏
Gα

consisting of sequences (gα) such that φαβ(gβ) = gα for all α ≤ β.

We call the inverse limit of a system of finite groups a profinite group. The most well-
known example is the following. Let us look at the partially ordered set (N,≤) where m ≤ n
if and only if m divides n. We know that for all m,n ∈ N there is an element γ ∈ N, namely
mn such that m ≤ γ, n ≤ γ. For each n ∈ N we set Gn = Z/nZ, and the homomorphism

φmn : Z/nZ→ Z/mZ,
a

n
7→ n

m
· a
n

=
a

m

satisfies the requirements.
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The inverse limit of this inverse system is then denoted by Ẑ and is also called the set of
profinite integers. It occurs in field extensions as the Galois group of the maximal constant
extension of a function field over a finite field Fq, since for each positive integer n there
exists a constant field extension of degree n, which gives a Galois group of Z/nZ. Running

over all these constant extensions then gives a Galois group of Ẑ.

Proposition 1.57. Let L/K be a possibly infinite Galois extension of fields. The Galois
groups of finite Galois subextensions of L/K together with the canonical surjective homo-
morphisms φMN : Gal(M/K) → Gal(N/K) whenever M/N is a Galois extension form an
inverse system. Their inverse limit is isomorphic to Gal(L/K), which means Gal(L/K) is
a profinite group.

We endow profinite groups with a natural topology as follows. If G is the inverse limit
of a system of finite groups (Gα, φαβ) then give the groups Gα the discrete topology, and
their product the product topology. We can then give G ⊆

∏
Gα the subspace topology

and see that the natural projection maps G → Gα are continuous. Moreover, their kernels
form a basis of open neighbourhoods of 1 in G.

Proposition 1.58. Let (Gα, φαβ) be an inverse system of groups equipped with the discrete
topology. Then the inverse limit G is a closed topological subgroup of the product

∏
Gα.

Theorem 1.59 (Main theorem for infinite Galois theory). Let M be a subextension of the
Galois group L/K. Then Gal(L/M) is a closed subgroup of Gal(L/K) and the maps

M 7→ H = Gal(L/M) H 7→M = LH

yield an inclusion-reversing bijection between subfields K ⊆ M ⊆ L and closed subgroups
H ⊆ G. A subextension M/K is Galois if and only if Gal(L/M) is normal in Gal(L/K).
In that case there is a natural isomorphism Gal(M/K) ∼= Gal(L/K)/Gal(L/M).

1.4 Equivalence between curves and function fields

The following section is based on Chapter 4 of [Sza09]. All proofs and more background
information can be found there. The goal of this section is to state an anti-equivalence of
categories between a certain set of curves and algebraic function fields. This result allows
us to transfer between the terms “field with many rational places” and “curves with many
rational points” whenever we want. Since a large part of the literature is written in terms
of algebraic varieties and schemes, it is important to see that these are essentially the same
objects. As we want to use this equivalence for a finite field k, we cannot use the definitions
of affine and projective curves as zero sets of polynomials. In [Har13] they cover the same
material for algebraically closed field, which is where we refer the reader who would like
some more intuition behind the correspondence that we will set up now.

Definition 1.60. Let X be a topological space. A presheaf of rings F on X is a rule that
associates with each non-empty open subset U ⊆ X a ring F(U) an each inclusion of open
sets V ⊆ U a homomorphism ρUV : F(U) → F(V ). Here the maps ρUU are the identity
maps and ρUW = ρVW ◦ ρUV whenever W ⊆ V ⊆ U . The elements of F(U) are called the
sections of F over U .

Definition 1.61. A morphism of presheaves Φ : F → G is a collection of homomorphisms
ΦU : F(U)→ G(U) such that for each inclusion V ⊆ U the following diagram commutes.
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F(V ) G(V )

F(U) G(U)

ρFUV

ΦV

ρGUV

ΦU

Definition 1.62. A presheaf F is a sheaf if for any non-empty open set U and covering
{Ui | i ∈ I} by non-empty open sets, it satisfies the following two axioms.

1. If two sections s, t ∈ F(U) satisfy s|Ui
= t|Ui

for all i ∈ I, then s = t;

2. Given a system of sections {si ∈ F(Ui) | i ∈ I} such that si|Ui∩Uj = sj |Ui∩Uj whenever
Ui ∩ Uj 6= ∅, then there exists a unique section s ∈ F(U) such that s|Ui

= si for all
i ∈ I.

A morphism of sheaves is just a morphism of presheaves.

Definition 1.63. A ringed space is a pair (X,F) in which X is a topological space, and F
is a sheaf of rings on X.

We can now define an integral affine curve over an arbitrary field k. Let A be a finitely
generated integral domain of transcendence degree 1 over k. By Noether’s normalization
lemma, in such an integral domain, every prime ideal is maximal. We associate to such an
integral domain A a topological space X as follows. As a set, X is the set of prime ideals
of A. The open subsets are X itself and those that do not contain a given ideal I ⊂ A.
All non-empty open subsets contain the prime ideal (0), which is called the generic point of
X. The other points of X come from maximal ideals and are closed as one point subsets,
which is why we call them closed points. We see that the open subsets in X are exactly the
subsets whose complement is a finite set of closed points.

Definition 1.64. For a point P ∈ X we define the local ring OX,P as the localization of A
at P , denoted by AP . Note that we have OX,(0) = K(X), the field of fractions of A which
we call the function field of X. For an open subset U ⊆ X we define

OX(U) =
⋂
P∈U
OX,P .

Proposition 1.65. The above construction defines a sheaf of rings on X. Moreover, we
have that A = OX(X).

Definition 1.66. We define an integral affine curve over k to be a ringed space (X,OX)
defined above. We write X = Spec(A) to say that X is the curve defined by the set A.

Definition 1.67. A morphism (Y,G) → (X,F) of ringed spaces is a pair (φ, φ#) with
φ : Y → X a continuous map and φ# : F → φ∗G a morphism of sheaves. φ∗G is the sheaf
on X defined by φ∗G(U) = G(φ−1(U)) for all open U ⊆ X.

Proposition 1.68. Let X = Spec(A), Y = Spec(B) be two affine curves. Then any

morphism φ : X → Y induces a ring homomorphism φ#
X : A → B given by O(X) →

(φ∗OY (X)) = O(Y ). Moreover, for every homomorphism ρ : A → B there exists a unique

morphism Spec(ρ) : Y → X such that (Spec(ρ))#
X : O(X)→ O(Y ) equals ρ.
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Proposition 1.69. The following maps induce mutually inverse contravariant functors
between the category of finitely generated integral domains of transcendence degree one over
a field k, and that of integral affine curves over k.

A 7→ Spec(A), ρ 7→ Spec(ρ) and X 7→ O(X), φ 7→ φ#
X .

Definition 1.70. An integral affine curve X is called normal if all its local rings are
integrally closed.

Definition 1.71. Let φ : Y → X be a morphism of integral affine curves. We say φ is finite
if O(Y ) becomes a finitely generated O(X)-module via the map φ#

X .

Note that a finite morphism is always surjective. Therefore, if φ : Y → X is a finite
morphism of integral affine curves, then we see that there is a corresponding injective ho-
momorphism O(Y ) → O(X). This gives an inclusion φ∗ : K(X) → K(Y ). We can now
state the first result of this subsection.

Theorem 1.72. Let X be an integral normal affine curve. Then the rule Y → K(Y ),
φ 7→ φ∗ induces an anti-equivalence between the category of normal integral affine curves
with finite morphisms φ : Y → X and that of finite field extensions of the function field
K(X).

We would like to find such an anti-equivalence for all algebraic function fields of degree
1, rather than just those for which an affine curve exists that has that field as its function
field. We will therefore define a larger set of curves, whose function fields are in fact all
global function fields. This will tell us that for every algebraic function field, there is at
least one curve that has that field as its function field. This will later enable us to transfer
all of our records for function fields with many rational places immediately to the context
of curves, which means that they can be uploaded on manypoints.org.

Definition 1.73. Let k be a field and K/k be a finitely generated field extension of tran-
scendence degree 1. Let XK be the set of discrete valuation rings with fraction field K
containing k. We endow XK with the topology in which the proper closed subsets are all
finite sets. We define a sheaf of rings on XK by OK(U) = ∩P∈UP for any open subset
U ⊆ XK . Then (XK ,OK) is a ringed space, and we call it an integral proper normal curve
over k with function field K.

It can be shown that proper normal curves come from projective curves in the same way
that affine open subsets come from affine curves (see [Sza09, Remark 4.4.4]).

Proposition 1.74. We call an open subset U of an integral proper curve affine if OK(U)
is a finitely generated k-algebra. The category of integral affine normal curves is equivalent
to that of affine open subsets of integral proper normal curves.

Definition 1.75. A morphism φ : Y → X of proper normal curves is finite if for all affine
open subsets U ⊆ X the preimage φ−1(U) ⊆ Y is affine and moreover φ∗O(U) is a finitely
generated O(U)-module.

Proposition 1.76. A morphism of proper normal curves is surjective if and only if it is
finite.

We can now state the equivalence that we have been looking for.

manypoints.org
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Theorem 1.77. The map that sends an integral proper normal curve over k to its func-
tion field induces an anti-equivalence between the category of integral proper normal curves
with finite surjective morphisms, and that of finitely generated field extensions of k having
transcendence degree 1.

The above theorem tells us that for every finitely generated field extension of k of tran-
scendence degree 1 (so for every algebraic function field) there exists a unique integral proper
normal curve over k that has that field as its function field. As integral proper normal curves
can be seen as projective curves (see for example [Har13, Proposition II.6.7]), we can thus al-
ways find a projective curve that has our desired function field. Moreover, we have seen that
the points of a normal integral proper curve are the discrete valuation rings with fraction
field K containing k.

Theorem 1.78. Let X be a proper normal curve and K be its function field. Then the
anti-equivalence of categories induces a one-to-one correspondence between the k-rational
points of X and the rational places of K.

Proof. See [Sti09, B.12]

From this theorem we see that talking about curves with many rational points is indeed
equivalent to talking about function fields with many rational places. The main benefit of
function fields is that we do not have to consider smoothness; for example, every hyperelliptic
function field corresponds uniquely to a proper normal curve, which in fact corresponds again
to a smooth projective hyperelliptic curve. For more information on hyperelliptic curves,
see [Liu02, Chapter 7.4.3].

1.5 Completions, local fields and adèles

Now that we have defined algebraic function fields and looked at their properties in field
extensions, it is time to introduce another type of field. Algebraic function fields will be the
main player of this thesis, and together with algebraic number fields, they form the category
of global fields. There is another category of fields, which is (not surprisingly) called local
fields. When discussing class field theory in Chapter 4, we will see that we need to know a
bit about local fields before we can look into global class field theory. We therefore quickly
introduce the terminology of local fields here, which will help us a lot when looking into
local and global class field theory. This section is based on [Ser13], all proofs and more
background information can be found there.

We start with a valued field (K, v) where we do not request any properties of K. First,
we will define an extension of K which we call its completion. The motivation for this
extension is the following.

Definition 1.79. We say that for elements xi ∈ K the sequence x1, x2, ... is convergent
with respect to the valuation v if there exists an element x ∈ K such that for any N ∈ N
there exists an integer n0 such that v(xn − x) > N for all n ≥ n0.
We say that a sequence x1, x2, ... is Cauchy if for any N ∈ N there exists an integer n0 such
that v(xn − xm) > N whenever n,m ≥ n0.

Any convergent sequence is Cauchy, but not every Cauchy sequence is convergent. This
motivates the following definition.

Definition 1.80. A valued field (K, v) is called complete if any Cauchy sequence of elements
of K is convergent with respect to the valuation v.
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When the field we work with is not yet complete, which is the case for the global fields
we will consider, we can create a unique field extension that is complete.

Definition 1.81. Let (K, vK) be a valued field. A completion of K is a field extension K ′

with a discrete valuation vK′ such that:

1. vK is the restriction of vK′ to K;

2. K ′ is complete with respect to vK′ .

Proposition 1.82. For any valued field (K, v) there exists a completion (K ′, v′) and it
is unique up to isomorphism. Moreover, if (K, v) is a complete valued field, then v has a
unique extension to any algebraic extension field L/K and there exists an integer e such
that v′(x) = e · v(x) for all x ∈ K.

Proposition 1.83. Let (K, v) be a valued field, and let K̂ be its completion with respect
to v. Then K lies dense in K̂.

Proposition 1.84. If K is a complete field and L/K is a finite extension, then L is a
complete field with the extended valuation.

Definition 1.85. We say that a field K is a local field if it is complete and its residue field
OK/pK is finite.

Proposition 1.86. There are three types of local fields.

1. Both R and C are local fields, as they are complete with respect to the Euclidean
valuation. These are the Archimedian local fields.

2. Let p be a prime number and denote by vp the valuation on the integers such that
vp(x) = n if pn|x, pn−1 - x. We can extend this valuation to Q by setting vp(

a
b ) =

vp(a)−vp(b). The completion of Q with respect to this valuation is denoted by Qp and
this field is called the field of p-adic numbers. Any finite extension of a field of p-adic
numbers is a local field. These are the non-Archimedean local fields of characteristic
zero.

3. Let k = Fp be a finite field of prime cardinality and let K = Fp(t) be a rational
function field. Then the completion of K with respect to one of the places of K is of
the form Fp((t)), which is its formal Laurent series. Any finite extension of a field of
the form Fp((t)) is a local field. These are the non-Archimedean local field of positive
characteristic.

The following theorem tells us why we are interested in local fields.

Theorem 1.87. Let k be finite field, let K be a global function field over k, and v a discrete
valuation of K with maximal ideal p. Then the completion of K with respect to the valuation
vp is a local field, which we denote by Kp. It is a finite extension of a formal Laurent series
of the form Fq((t)).

Proof. See [Lor07, Chapter 25, Theorem 2].

Proposition 1.88. Let K a global field, and p a place of K. Let L/K an abelian extension,
and denote by q a place of L above p. Then the Galois group of Lq/Kp is exactly the
decomposition group GZ(q|p).
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Proof. We start by noting that for any σ ∈ Gal(L/K) and any element x ∈ L∗ we have
that vq(x) = vσ(q)(σ(x)) (see [Sti09, Lemma 3.5.2]). Therefore σ induces an isomorphism
from Lq to Lσ(q). Whenever σ ∈ GZ(q|p) we know that σ(q) = q and σ thus induces an
automorphism σq of Lq. Moreover, σq is the identity on K, and therefore also on Kp (as
K lies dense in Kp). We thus see that σq ∈ Aut(Lq/Kp). This means that there exists a
group homomorphism η : GZ(q|p)→ Aut(Lq/Kp) and we see that this map is injective.

All that is left to prove now is that η is surjective. We do so by showing that |GZ(q|p)| =
|Gal(Lq/Kp)|. Set r = [Gal(L/K) : GZ(q|p)]; then we know that there are exactly r places
of L that lie above p. We denote them by q1, ..., qr. Then we have that

|Gal(L/K)| = r · |GZ(q|p)| =
r∑
i=1

|GZ(qi|p)| ≤
r∑
i=1

[Lqi
: Kp] = [L : K] = |Gal(L/K)|.

We see that |GZ(qi|p)| = [Lqi
: Kp] and thus that the above map is indeed an isomorphism.

Corollary 1.89. Let L/K be an abelian extension of function fields. Let p be a place of K
and let q be a place of L lying above p. Then Lq/Kp has cyclic Galois group.

One of the great benefits of local fields is that they have only one prime ideal. Studying
a local field then gives us a lot of information about this prime ideal. When studying
extensions of global fields in Chapter 4, it will therefore be very useful to look at the
behaviour of each place individually. We can do that by studying the following object.

Definition 1.90. We define the adèle ring to be

AK = {(ap)p ∈
∏

p∈PK

Kp | vp(ap) ≥ 0 for all but finitely many p ∈ PK}.

The units of the adèle ring are the idèles, defined as

JK = {(ap)p ∈
∏

p∈PK

Kp | vp(ap) = 0 for all but finitely many p ∈ PK}.

As each element a ∈ K has vp(a) = 0 for all but finitely many p, we see that K can be
viewed as a subring of JK embedded diagonally. The idèles corresponding to elements of K
are called the principal idèles. Therefore, the following object is well-defined.

Definition 1.91. Let K be an algebraic function field, and JK its ring of idèles. Then we
define CK = JK/K to be the idèle class group.

This idèle class group will be one of the main objects throughout this thesis. We will see
in Chapter 4 that there exists an injective homomorphism from the idèle class group to the
Galois group of the maximal abelian extension of a function field K. This homomorphism,
together with a relation between the divisor class group and the idèle class group, will be
the foundation of the algorithm that we use in Chapter 5.
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2 Unramified Extensions

In this chapter, we will construct an algorithm that finds many new records using unramified
extensions. We will first look at some upper bounds on the maximal number of rational
places, as we wish to come as close to those upper bounds as possible. We will then create a
map that sends each divisor to an element of the Galois group. When we restrict this map,
this gives us an isomorphism between the degree zero divisor class group and the Galois
group of the maximal abelian extension in which one place splits completely. Although
we can only prove this theorem in Chapter 5, we will see here how it can be used to find
extension fields with many rational places.

2.1 Upper bounds on the number of rational places

In this section, we will give an overview of upper bounds that are relevant for our research.
Roughly speaking, two kinds of upper bounds can be found in the literature (see [Ser20] for
an extensive overview). First, there are explicit upper bounds, which give a direct relation
between the genus g, the cardinality of the finite field q, and the number of rational points
of a curve/rational places of a function field with those parameters, which we denote by
Ng(q). These are the kind of bounds that we will consider in this section. The other kind of
upper bounds are those that give an asymptotic relation between g and q on the one hand,
and Ng(q) on the other, when g (or sometimes q) goes to infinity. Most of the time, these

are denoted in terms of Ag(q) =
Ng(q)
g for g → ∞. Since we are interested in curves with

genus up to 50, these are not very relevant for our research, and we will focus on the explicit
bounds.

We will consider three different bounds. First of all, we will look into the Hasse-Weil
bound and the Serre bound, as the Serre bound is an improvement of the Hasse-Weil bound.
When looking at the entries of manypoints.org, we see that this bound is very effective
when looking at entries where g is small, up to about half the size of q. After a description
of this bound, we will continue with the Ihara bound. This bound is very effective when the
genus is roughly equal to the size of the finite field, say 1

2q ≤ g ≤ 2q. Lastly, we treat the
Oesterlé bound, which is most effective when the genus is larger than the size of the finite
field. Together, these three bounds account for the majority of the upper bounds for finite
fields of prime cardinality 3-13, which is our playing field. All proofs and more background
information, as well as other bounds, can be found in [Ser20] and [Voi05].

We start with the Hasse-Weil bound, perhaps the most famous of these bounds.

Theorem 2.1 (Hasse-Weil bound). Let K be a function field over Fq with genus g. Denote
by Ng(q) the number of rational places of K. Then we have the following bound:

|Ng(q)− (q + 1)| ≤ 2gq1/2.

This bound gives both an upper and a lower bound for the number of rational places
of a function field. We see that when g and q get larger, the range in which the maximum
number of places can lie grows quite fast, especially when g grows. This is why this bound
is most effective when g is small in terms of q.
The following, slightly improved, version of this bound is due to Serre [Ser83].

manypoints.org
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Theorem 2.2 (Serre’s bound). Let K be a function field over Fq with genus g. Denote by
Ng(q) the number of rational places of K. Then we have the following bound:

|Ng(q)− (q + 1)| ≤ 2bgq1/2c.

We see that in practice this can decrease the upper bound of Ng(q) by one rational place.
Although that might not seem revolutionary, for low genera and small finite fields many of
the gaps between the highest number of rational places found and the lowest theoretical
bound are only one or two places. Moreover, this bound (denoted by Hasse-Weil-Serre on
manypoints.org) is the best bound found yet for many combinations of g and q. For larger
primes, say p > 30, this bound is actually responsible for almost all upper bounds known
for g ≤ q

2 over Fp.

The next bound that we will consider is the Ihara bound, first published in [Iha82].

Theorem 2.3 (Ihara bound). Let K be a function field over Fq with genus g. Denote by
Ng(q) the number of rational places of K. Then we have the following bound:

Ng(q) ≤
1

2

√
(8q + 1)g2 + (4q2 − 4q)g − (g − 2q − 2).

Proposition 2.4. The Ihara bound is stronger than the Hasse-Weil upper bound when

g >

√
q(
√
q − 1)

2
.

Proof. We see that the Ihara bound is stronger than the Hasse-Weil upper bound whenever

2gq1/2 + q + 1 >
1

2

√
(8q + 1)g2 + (4q2 − 4q)g − (g − 2q − 2)

Squaring on both sides and using some algebra gives us the following inequalities

g2(4q1/2 + 1)2 > (8q + 1)g2 + (4q2 − 4q)g ;

g((4q1/2 + 1)2 − 8q − 1) > (4q2 − 4q) ;

g >
4q2 − 4q

(4q1/2 + 1)2 − 8q − 1
;

g >
q2 − q

2q + 2q1/2
;

g >

√
q(
√
q − 1)

2
.

We thus see that the Ihara bound is stronger than the Hasse-Weil upper bound whenever

g >
√
q(
√
q−1)

2 .

We thus see that whenever g is about half as large as q, the Ihara bound is better than the
Hasse-Weil bound. When we get to even larger genera, the Ihara bound will be superseded
by the following bound. See [Ser20, p. VI.3] for more background on the Oesterlé bound.

Theorem 2.5 (Oesterlé bound). Let K be a function field of genus g over Fq with N + 1
rational places. Let m be the integer such that

√
qm < N ≤ √qm+1 and let

u =

√
qm+1 −N

N
√
q −√qm

∈ [0, 1).

manypoints.org


2.2 The Artin map 25

Denote by θ0 the unique solution in [ π
m+1 ,

π
m ) of

cos

(
m+ 1

2
θ0

)
+ u cos

(
m− 1

2
θ0

)
= 0.

Then

g ≥
(N − 1)

√
q cos(θ0) + q −N

q + 1− 2
√

2 cos(θ0)
.

This bound gives us a minimum value for the genus whenever a curve has at least a
certain amount of rational places. This way, we can also deduce a maximum number of
rational places for each pair (g, q). In practice, not many function fields have been found
that reach this bound, but it is still the best generally applicable upper bound whenever
g ≥ 2q.

2.2 The Artin map

In this section, we will construct a map from the group of divisors of a global function
field K to the Galois group of a finite abelian unramified extension L/K. This map will
eventually induce an isomorphism between the degree zero part of the class group and the
Galois group of the maximal unramified extension of K in which one rational place splits
completely over K. It is this isomorphism that we will use to create extensions with many
rational places.

Let L/K be a finite Galois extension of global function fields. Let p be a place of K that
does not ramify in L, i.e. p has decomposition p = q1 · ... · qr. Recall from Definition 1.52
that the decomposition group of qi is the stabilizer group of qi, i.e.

GZ(qi|p) = {σ ∈ Gal(L/K) | σ(qi) = qi}.

Lemma 2.6. Let L/K be a finite Galois extension of global function fields. The decompo-
sition group of an unramified place is a cyclic group.

Proof. We know from Theorem 1.53.3 that Gal(K̃ ′q/K̃p) ∼= GZ(q|p)/GT (q|p). For unramified

places, we have that GT (q|p) = {id} and thus that Gal(K̃ ′q/K̃p) ∼= GZ(q|p). Since K̃ ′q/K̃p

is a finite extension of finite fields, it has a cyclic Galois group, which means GZ(q|p) is
cyclic.

Lemma 2.6 tells us that the decomposition group is cyclic, and therefore has a well-
defined generator. This allows us to define the following.

Definition 2.7. Let L/K be a finite Galois extension of global function fields, and let qi
be a place of L that lies above an unramified place p of K. Choose a generator of the

decomposition group D(qi) and denote this by (L|Kqi
). We call this the Artin symbol of qi

in L/K.

It turns out that we can simplify this definition when we are considering only abelian
extensions.

Proposition 2.8. Let L/K be a finite Galois extension and let p be an unramified place
of K. Then the Artin symbols of all places qi above p are conjugate. Moreover, when L/K is
abelian, the Artin symbols are all equal and we can define the Artin symbol of a place p of K,

which is denoted by (L|Kp ).
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Proof. Let qi, qj be two distinct places of L above p. Since the Galois group acts transitively
on the places above p, there always exists a permutation σ ∈ Gal(L/K) such that σ(qi) = qj .
Now for any τ ∈ Gal(L/K) we have that

τ(σ(qi)) = σ(qi) ⇐⇒ (τσ − σ)qi = 0 ⇐⇒ (σ−1τσ − id)qi = 0

and therefore that τ ∈ D(qj) = D(σ(qi)) if and only if τ ∈ σD(qi)σ
−1.

This enables us to create a map from the group of divisors to the Galois group of an
abelian extension.

Definition 2.9. Let L/K be a finite unramified abelian extension of global function fields.
The Artin symbol induces a map from the divisor group of K to the Galois group of L/K
as follows. Let Div(K) be the divisor group of L/K. Then the Artin map can be defined
as: (

L|K
·

)
: Div(K)→ Gal(L/K);

∑
p∈PK

npp 7→
∏

p∈PK

(
L|K
p

)np

.

which is well-defined because the support of any divisor is finite.

We will now show that this Artin map is surjective for every finite abelian extension of
global function fields L/K.

Proposition 2.10. Let L/K be a finite abelian unramified extension of global function

fields. Then for any place p ∈ PK we have that
(
L|K
p

)
= 1 if and only if p splits completely

in L.

Proof. Let p be a place of K that splits completely in L. Then we see that none of the
non-trivial elements of the Galois group send a place qi ∈ PL to itself, as there are exactly
as many elements in the Galois group as there are places above p and the Galois group acts
transitively. This means that the decomposition group of the places qi above p consist only
of the identity element. As the Artin symbol is the generator of the decomposition group,
a place that splits completely is sent to the identity element by the Artin map.

On the other hand, if the Artin map sends a place to the identity element, that means
that the decomposition group of that place consists only of the identity element. Proposition
2.8 tells us that the Artin symbol of all places qi above p are equal. Therefore, by definition
of the decomposition group, this means that no non-trivial element of the Galois group sends
the places above p to themselves. Therefore there must be |Gal(L/K)| = |L : K| places
above p, which implies that p splits completely in L.

In order to show that the Artin map is surjective, we need an auxiliary lemma that is a
corollary of Chebotarev’s density theorem. We will first state this theorem.

Theorem 2.11 (Chebotarev’s density Theorem). Let L/K be a finite Galois extension of
function fields, and let G = Gal(L/K). Let C be a conjugacy class in G and denote by
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SK the set of places in K which are unramified in L. Denote by |K̃p| the cardinality of the
residue class field of K at p. We define the Dirichlet density of a subset M of SK to be

δ(M) = lim
s→1+

∑
p∈M |K̃p|−s∑
p∈SK

|K̃p|−s
.

Then we have that

δ

(
{p ∈ SK |

(
L|K
p

)
∈ C}

)
=

#C

#G
.

Proof. See [Ros02, Theorem 9.13 A].

The auxiliary lemma is the following.

Lemma 2.12. Let L/K be a finite abelian extension. If all places p ∈ PK split completely
in L then K = L.

Proof. We see that if all places p ∈ PK split completely in L then we have that the Artin
symbol of every place p ∈ PK is equal to the identity. This means that

1

#G
= δ

(
{p ∈ SK |

(
L|K
p

)
∈ {id}}

)
= 1

from which it follows that G = {id} and thus that L = K.

Theorem 2.13. Let L/K be a finite abelian extension of function fields. Then the Artin
map is surjective.

Proof. Let H be the image of the Artin map, and let F be the fixed field of L by H. Then
it suffices to show that F = K in order to prove that the Artin map is surjective.

Let D ∈ Div(K). Then since F is the fixed field of H, we see that
(
F |K
D

)
= 1. In

particular, if we take D to be a divisor consisting of one place p, then we see by Proposition
2.10 that this is possible if and only if p splits completely. Thus we see that all divisors
consisting of one place in Div(K) split completely in F . Therefore by Lemma 2.12 we see
that this implies that [F : K] = 1 and thus our result is proven.

Let us look at how we can use the Artin map to create unramified field extensions with
many rational places.

Proposition 2.14. Let K be a global function field and let L/K be an unramified finite
purely geometric abelian extension. Then any rational place in L lies above a place of K
that is also rational. Moreover, a rational place p of K only has rational places lying above
it, if p splits completely in L.

Proof. Let L/K be a finite unramified abelian extension, let p be a place of K and let
q1, ..qm be the places lying above p. Then we know from Theorem 1.35 that we have

m∑
i=1

e(qi|p) · f(qi|p) = [L : K].

Now since L/K is Galois, we see that the ramification and inertia indices of all places qi
above a place p are equal, so we have e(qi|p) = e(p), f(qi|p) = f(p). Since L/K is unramified
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we know that e(p) = 1, which means that m · f(p) = [L : K]. Now, by definition we have
that

f(p) = [L̃qi
: K̃p] =

deg(qi)

deg(p)
· [k′ : k]

where k′ is the constant field of L. Now, as L/K is a purely geometric extension, we see
that [k′ :′ k] = 1 and thus that f(p) ·deg(p) = deg(qi). From this it follows that deg(qi) = 1
if and only if both f(p) = 1 and deg(p) = 1, which concludes our proof.

We see from Proposition 2.14 that the only way to create unramified field extensions with
many rational places, is to make sure that many of the rational places of the ground field
split completely. We will therefore look into a special kind of field extensions, namely those
in which at least one rational place splits completely. We will need the following definition.

Definition 2.15. Let K be a global function field, and let o be a rational place of K. Then
we denote by Ko the maximal unramified extension of K such that the rational place o
splits completely.

Proposition 2.16. The field extension Ko/K is a completely geometric extension.

Proof. When we demand that a rational place o splits completely in an extension L/K, we
see that this means that f(oi|o) = 1 for all places oi lying above o. Moreover, Theorem 1.35
tells us that

f(qi|p) =
deg(qi)

deg(p)
· [k′ : k]

where k′ is the constant field of L. When deg(p) = 1, that means that f(qi|p) = deg(qi) ·
[k′ : k]. Now since we require o to split completely, that means f(oi|o) = 1 in the extension
Ko/K. Therefore, we see that there is no constant field extension, and Ko/K is thus a fully
geometric extension.

We will now define the Artin map on the degree zero divisor class. Fix a place of degree
one in K, call that place o. Then we see that every divisor of degree 0 can be written as
the sum of divisors of the form p− deg(p)o. We thus see that those divisors form a basis of
the group Cl0K .

Theorem 2.17. Let K be a global function field. Then the map ϕo sending

Cl0K → Gal(Ko/K), [p− deg(p)o] 7→
(
Ko|K

p

)
is an isomorphism.

Let us try to create some intuition behind this map, as this map will be the foundation
of our algorithm. First of all, we see that the domain of this map is Cl0K instead of Div(K).
We can go from Div(K) to Div0(K) by mapping each divisor

D =
∑

mpp 7→ D′ =
∑

mpp− (
∑

mp)o.

This way, each divisor D is mapped to D − deg(D)o. Taking the quotient with the group
of principal divisors (which always have degree zero) then gives a map φ : Div(K) → Cl0K
such that if we denote the Artin map from Definition 2.9 by ϕL/K , we have ϕL/K = ϕo ◦ φ.
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Recall that the Galois group of the maximal constant extension of a function field K is
isomorphic to Ẑ, the group of profinite integers. The Galois group of the maximal unrami-
fied abelian extension of K will then be of the form G0× Ẑ, where G0 is the Galois group of
the maximal geometric extension of K. The fact that Ko/K is a purely geometric extension
tells us that the Galois group of Ko/K is a subgroup of G0. On the other hand, we know
that Div(K)/Z ∼= Div0(K), which is for example induced by the degree map. Therefore,
it seems reasonable that when the image of the Artin map is the Galois group of a purely
geometric extension, a quotient by Z can be taken on the preimage of the Artin map. In
Chapter 5 , after treating cohomology and abstract class field theory, we will be able to fully
prove this isomorphism. For now, let us look at how we can apply it to find unramified field
extensions that have many rational places.

Recall that for an algebraic extension L/K we denote by Z(qi|p) the fixed field of L
under GZ(qi|p). Theorem 1.55 tells us that for any intermediate field K ⊆M ⊆ L and p a
place of K, we have that

M ⊆ Z(qi|p) ⇐⇒ p splits completely in M/K.

This will be the foundation of our algorithm. We are looking for extensions with a high
number of rational places, and we have seen that the only way to create rational places
in extensions is to have rational places in the ground field that split completely. In our
algorithm, we will thus try to find as many of those extensions as possible. In the rest of
this section, we will investigate some properties of intermediate extensions K ⊆ L ⊆ Ko.
The goal is to find out which requirements we need to put on those intermediate field in
order for them to have many rational places.

Definition 2.18. Let K be a global function field and let o be a rational place of K.
Let G be a subgroup of Cl0K . Since Cl0K is an abelian group, we see that G is a normal
subgroup. Denote by G the corresponding subgroup under the isomorphism of Theorem 2.17
in Gal(Ko/K), which is again a normal subgroup. We denote by (Ko)G the intermediate
extension of K consisting of those elements of Ko that are fixed under the action of G.

Note that the Galois group of (Ko)G/K is isomorphic to Gal(Ko/K)/G.

Proposition 2.19. Let K be a global function field of genus g, and o a rational place of K.
Let G be a subgroup of Cl0K of index d. Then the genus of the extension (Ko)G is equal to

g′ = d · (g − 1) + 1.

Proof. Hurwitz’ genus formula 1.41 tells us that for an extension K ′/K we have

2g′ − 2 =
[K ′ : K]

[k′ : k]
(2g − 2) + deg(Diff(K ′/K)).

Moreover, we know from Dedekind’s different theorem (Theorem 1.42) that in an unramified
extension (so when e(qi|p) = 1 for all places p of K), the degree of the different is zero. This
leads to

g′ =
[(Ko)G : K]

[k′ : k]
(g − 1) + 1.

Because Ko is a purely geometric extension, we have that [k′ : k] = 1 and see that
[(Ko)G :K]

[k′:k] is equal to [(Ko)G : K]. Now as G is a subgroup of index d in Cl0K , we know
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that G has index d in Gal(Ko/K) . From this, we see that [(Ko)G : K] = d and we get
g′ = d · (g − 1) + 1.

Proposition 2.20. A place p splits completely in (Ko)G/K if and only if [p−deg(p)o] ∈ G.

Proof. Assume p splits completely. We know by Proposition 2.10 that a place p splits

completely if and only if its Artin symbol satisfies ( (Ko)G |K
p ) = id. As the Galois group of

(Ko)G/K is equal to Gal(Ko/K)/G, that means that the Artin symbol of p is an element

of G. Now the Artin map sends [p − deg(p)o] 7→ ( (Ko)G |K
p ), and if the Artin symbol of

p is an element of G, we conclude that [p − deg(p)o] must be an element of G. For the
reverse implication we can use the same arguments. If [p− deg(p)o] ∈ G then we know that

( (Ko)G |K
p ) ∈ G, which is the Galois group of Ko/(Ko)G . We therefore see that [p− deg(p)o]

is mapped to the identity in Gal((Ko)G/K) by the Artin map, and can use Proposition 2.10
to conclude that p splits completely.

We can use this proposition to determine the number of rational places of a field extension
that is formed by taking subgroups of the degree zero class group, and then applying the
Artin map.

Proposition 2.21. Let K be a global function field of genus g, and o a rational place of
K. Let G be a subgroup of Cl0K of index d and let G be the corresponding subgroup of
Gal(Ko/K). Denote the set of rational places of K by {pi}. Then the number of rational
places of (Ko)G is equal to

d · |G ∩ {[pi − o]}|.

Proof. We know from Proposition 2.14 that every rational place of (Ko)G lies above a
rational place p of K. Moreover, in an unramified extension the only way a rational place in
the ground field can stay rational in the extension field is if it splits completely. Proposition
2.20 tells us that a rational place p of K splits completely if and only if [p − o] ∈ G. For
each rational place of the ground field that splits completely, there will be [(Ko)G : K] = d
rational places in the extension field. This concludes our proof.

We will see in Chapter 5 that when looking at ramified extensions, both of these formulas
will be a bit more complicated. This is the main reason why we treat unramified extensions
first. We will now see how we can use this theory to find function fields with many rational
places.

2.3 Construction of the algorithm

The goal of the algorithm we will construct in this section is to find for each genus g′ ≤ 50
and small finite field Fq with 5 ≤ q ≤ 13 prime, a function field over Fq with genus g′ and a
high number of rational places, preferably higher than the number of rational places known
on manypoints.org. A naive way to find these records is to create a list of all function fields
over Fq with genus g, and then check for each of those function fields how many rational
places they have. Unfortunately, in practice this is not at all feasible for multiple reasons.
First of all, the number of function fields for a given genus grows exponentially with the
genus, so there are way too many possible function fields for genus > 4. For example,
considering only hyperelliptic function fields (which are only a small subset of all possible
function fields) gives about q2g+1 possible function fields of a given genus g. Moreover it

manypoints.org
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takes an enormous amount of memory to store the defining equations for all those function
fields. Even more important is the fact that checking the number of rational places of a
function field of large genus can easily take several minutes in MAGMA [BCP97]. We are
therefore looking for a way around this direct computation. This is what we will propose
here.

Let K be a global function field. We have seen that the Artin map sends the degree
zero part of the class group of K to the Galois group of the maximal unramified extension
of K in which one fixed rational place o splits completely. By taking a subgroup G of index
d in this Galois group and looking for the subfield of Ko that is fixed under that subgroup,
we get unramified field extensions of K. By Theorem 2.17, we know that there exists a
subgroup G of the degree zero class group such that Cl0K/G

∼= Gal((Ko)G/K). Moreover,
Proposition 2.19 and Theorem 2.21 determine the genus of this extension and its number
of rational places. This way we know for all function fields that can be constructed as an
unramified field extension of a lower genus function field how many rational places they
have, given that we have enough information on the ground field.

We will now write down in words how the algorithm works. In the appendix one can see
the algorithm for unramified extensions for genus 4 curves over F5. We start by creating a
list of all suitable function fields of a certain genus g over Fq. We do this using the following
steps. First, we make a list of all possible coefficients of the type of polynomial that we
are interested in. For example, when looking at hyperelliptic function fields of genus 2 over
F7, we can make a list of all possible coefficients of a monic degree 5 polynomial (which
gives 75 items) and a similar list for monic degree 6 polynomials (giving 76 items). We
then filter this list so that we only get separable or only irreducible polynomials, and add
those polynomials to another list. Lastly, we choose to filter these polynomials based on
how many rational places their corresponding function fields have.

Once we have the set of polynomials we can start finding field extensions. We start by
creating a set Results that consists of at least 50 entries that are all zero. We want our
algorithm to manipulate that set, meaning that each time that it finds a field extension of
genus x with N rational points, the algorithm checks the x-th entry of the set Results. If
that entry is less than N , it overwrites the x-th entry of the set Results. Since we want our
algorithm to not only give the number of places, but also the corresponding ground field,
subgroup G of Cl0K and the place o that needs to split completely, we also have a set we call
set in which this information is stored. Whenever the x-th entry of Results is overwritten,
the x-th entry of set is also automatically overwritten. This way, when the algorithm ends,
we know exactly which field extension corresponds to our record.

In order to find out how many rational point each function field has, we do the following.
Starting with a polynomial from our set of irreducible polynomials with many places (de-
noted by polmanyplaces), we compute its class field and the subgroups of the degree zero
class field. For each of those subgroups G, we compute the index. If the index is less than
50 for genus 2 ground fields, or 25 for genus 3 ground fields, or 17 for genus 4 ground fields,
we continue. By bounding the index like this we make sure that all our field extensions have
genus less than 50, which speeds up our algorithm. For each rational place o we compute
the number of elements in the set {[pi − o]} ∩ G, where pi ranges over the rational places
of K. By Propositions 2.19 and 2.21, this gives us the genus and the number of rational
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places of this field extension. If this number of places is higher than we have found in the
current computation, the sets Results and set are overwritten. Either way, the algorithm
then proceeds to the extension in which the next rational place splits completely. This way
it goes through all subsets of Cl0K of bounded index, and once that is done it can go onto
the next function field.

There are still some limitations to this approach. First of all, for genus larger than 3 it is
not feasible to let this algorithm run over all function fields of this genus. We will therefore
focus on hyperelliptic function fields only for this thesis, most of the time only allowing
imaginary hyperelliptic curves. This means working only with degree 2g + 1 polynomials,
which means only a fraction of 1

q+1 of the input set. We see that almost all optimal function
fields that are found in previous papers using these methods for finite fields of cardinality
at least 7 came from imaginary hyperelliptic curves, with one exception in [Rök12]. We
therefore think this is a reasonable reduction. For even larger finite fields, the input set has
to be narrowed down even further. We can do this by letting the algorithm run only over
polynomials that have a fixed coefficient in front of certain terms of the polynomial or by
only looking at irreducible polynomials instead of all separable ones.

Moreover, we will set a lower bound on the number of rational places that a function
field needs to have in order to consider its extensions. We see in Theorem 2.21 that the
number of rational places of a field extension is d · |{[pi − o]} ∩ G|. This means that when
a function field has only 2 rational places, the field extension can have at most 2d rational
places, whereas the genus of the field extension is g′ = d · (g−1) + 1. Looking at the current
records we see that a function field with 2 rational points will never be able to have a field
extension that is a new record. For each function field, the running time of the algorithm
depends on the degree of the defining polynomial and the cardinality of the finite field that it
is defined over. Depending on this running time, one has to choose a bound for the number
of rational places that a function field needs to have in order to be considered potentially
successful. A lower bounds means longer running time, but also a higher probability to
actually find all records that can be found this way.

This way, we reach only a small subset of all function fields of genus four or higher.
However, until now a similar algorithm has only been carried out for genus two and three
in [Rök12] and [Sol15], and over finite fields of cardinality seven or more there has not been
much research apart from the papers mentioned above and a few papers looking at fibre
products of two Kummer covers, see for example [ÖTY13]. We therefore expected that
reaching a small subset of large genus function fields can already give us many new records.

The run time depends mostly on the number of function fields that one wants to consider,
and the number of rational places that they have. The number of hyperelliptic function
fields grows roughly as q2g+1, with q the cardinality of the finite field and g the genus of
the ground field. When looking at the entries for low genus function fields over F5 up to
F13 at manypoints.org we see that the maximum number of places grows roughly linearly
with q. Therefore, the total run time can be estimated to grow as q2g+2 which shows that
the computations slow down extremely fast when moving to higher genus ground fields.

manypoints.org
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2.4 Results

We first list an overview of the new records that we found. In order for a lower bound to
appear on manypoints.org it needs to satisfy the following minimum. Let Ug(q) be the

upper bound stated, then the lower bound needs to be at least
Ug(q)−q−1√

2
+ q + 1. For

example, the best known upper bound for q = 11, g = 22 is 114. This means that for a
function field of genus 22 over F11 to be considered, it needs to have at least 114−12√

2
+12 ≤ 85

rational places.
We denote in the table by “previous bound” the current bound on manypoints.org.

The fact that the previous bound for q = 11, g = 22 is ... - 114 means that the best known
upper bound is 114 and that no function field has yet been found with this g and q that has
at least 85 rational places. The function field that we found has 91 rational places, which
means that it can be entered in manypoints.org as a new record.

finite field genus number of rational places previous bound
F5 34 77 76 - 83
F7 16 55 54 - 63
F7 28 81 72 - 95
F7 31 90 ... - 103
F7 34 99 ... - 111
F7 37 108 ... - 119
F7 43 112 ... - 135
F7 46 120 ... - 142
F7 49 128 114 - 150
F11 16 75 ... - 89
F11 22 91 ... - 114
F11 25 104 96 - 127
F11 31 120 ... - 149
F11 34 121 ... - 160
F11 37 132 ... - 171
F11 40 143 ... - 181
F11 43 168 ... - 192
F11 46 165 ... - 203
F11 49 176 ... - 213
F13 25 112 ... - 142
F13 28 117 ... - 156
F13 31 130 ... - 170
F13 34 143 ... - 183
F13 37 156 144 - 195
F13 40 156 ... - 207
F13 49 192 ... - 243

Table 1: Records found using the unramified algorithm

We have found these records by letting the algorithm run over the following sets.

1. Hyperelliptic function fields of genus 4 over F3: all monic separable degree 9 and 10
polynomials with at least 5 rational places (no new records).

manypoints.org
manypoints.org
manypoints.org
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2. Hyperelliptic function fields of genus 4 over F5: all monic separable degree 9 and 10
polynomials with at least 8 rational places.

3. Hyperelliptic function fields of genus 4 over F7: all monic irreducible degree 9 polyno-
mials with at least 10 rational places.

4. Hyperelliptic function fields of genus 4 over F11: all monic irreducible degree 9 poly-
nomials for which the coefficient of x8 is always 1 with at least 14 rational places.

5. Hyperelliptic function fields of genus 4 over F11: all monic separable degree 9 polyno-
mials of the form x9 + x8 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 where a0 is
either 0, 1 or 2 and the corresponding function fields has at least 14 rational places.

6. Hyperelliptic function fields of genus 4 over F13: a subset of the set of monic irreducible
degree 9 polynomials for which the coefficients of x8 is always 1 with at least 16 rational
places. I managed to let this algorithm run over 588 · 135 polynomials. This is about
2 percent of all degree 9 polynomials with coefficients in F13 so it is reasonable to say
that more records can be found using this algorithm when running over the entire set.

7. Hyperelliptic function fields of genus 4 over F13: all monic separable degree 9 polyno-
mials of the form x9 + x8 + x6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 with ai ∈ F13

with at least 16 rational places.

We will now state the information needed to verify the results above and show how to
actually verify this result. The first record that we found is the following.

F5 g = 34, N = 77
polynomial y2 + 4 ∗ x9 + 3 ∗ x5 + x4 + 4 ∗ x3 + 4
subgroup Z/175Z
o (1/x, 1/x5 ∗ y)

We can verify this record as follows. First, we create the function field that corresponds
to this polynomial. We then define the set of rational places, the class group of this function
field and the set of subgroups of the degree zero class group. We obtain the degree zero
class group by eliminating the last generator of the class group, as the last generator always
corresponds to a factor Z.

k:=GF(5);

R<x>:=PolynomialRing(k);

P<y>:=PolynomialRing(R);

L<y>:=FunctionField(y^2+4*x^9+3*x^5+x^4+4*x^3+4);

pl1:=Places(L,1);

C,f,g:=ClassGroup(L);

l:=Ngens(C);

G:=Generators(C);

GG:=Exclude(G, C.l);

C0:=sub< C | GG>;

CC:=Subgroups(C0);

C;
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Abelian Group isomorphic to Z/1925 + Z

Defined on 2 generators

Relations:

1925*C.1 = 0

When printing the places of degree 1 and the subgroups of the degree zero class group,
the first place that MAGMA gives us is always the infinite place. In this case, we thus
have that o corresponds to the first place. The subgroup we consider here is the fourth that
MAGMA prints in the list CC.

CC[4]‘subgroup;

Abelian Group isomorphic to Z/175

Defined on 1 generator in supergroup C0:

$.1 = 11*C0.1

Relations:

175*$.1 = 0

We see that this subgroup has order 175, and that the degree zero part of the class group
has order 1925. This means that the subgroup we consider has index 11 in the class group.

for i in [1..#pl1] do

DD:= g(pl1[i]-pl1[1]);

if DD in CC[4]‘subgroup then

print i;

end if;

end for;

1

2

3

6

7

10

11

This output tells us that there are 7 places in the set {[pi − o]} ∩G. We have seen that
we are working with a subgroup of index 11, which means that Theorem 2.21 tells us that
this extension has 11 · 7 = 77 places, which is an improvement of the old lower bound.

The other records can be verified in a similar way using the information in the appendix.
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3 Cohomology

The goal of this chapter is to set up the language and theorems that will be needed to
construct class fields in the next chapter. We will therefore not give a complete overview
of Galois cohomology, but only state what will be needed. We start with the definition
of cohomology groups, using complexes and projective resolutions. We will look into the
most intuitive resolution, called the standard resolution of Z. This enables us to create
homology groups in a similar way without spending too much time on the details. We
will then define Tate cohomology groups, which have the advantage that there is no need
for a distinction between cohomology and homology groups. We proceed by investigating
the relation between different cohomology groups, defining the restriction, corestriction and
inflation maps and their connection. The last tool that we need in order to understand
class field theory is the cup product. This construction relates Tate cohomology groups
of different degrees, which will be extremely useful for our purposes. At the end of this
chapter we will have enough knowledge of Galois cohomology to understand abstract class
field theory, which will bring us one step closer to constructing curves over finite fields with
many rational points. This chapter roughly follows Chapter 3 of [GS17] except for the part
on Tate cohomology.

3.1 Group cohomology

We start this section by quickly recalling some facts about groups and modules.

Definition 3.1. Let G be a group. A G-module is an abelian group A with a left action
by G such that for any a, b ∈ A, g ∈ G we have that g(a+ b) = ga+ gb.

Definition 3.2. We say that a G-module M is trivial whenever G acts trivially on M ,
meaning that G sends any element of M to itself.

Definition 3.3. For two G modules A and B, we denote by HomG(A,B) the set of G-
module homomorphisms, which are morphisms of abelian groups compatible with the G-
action. HomG(A,B) is itself again an abelian group under the natural addition of homo-
morphisms. We denote by AG the subgroup of G-invariant elements in a G-module A.

The goal of this subsection is to define cohomology groups. These groups tell something
about the group actions of G on a given G-module A. More specifically, we are looking for
the following.

Proposition 3.4. Let G be any group and A,B be G-modules. We will define abelian
groups Hi(G,A) such that:

1. H0(G,A) = AG for all G-modules A;

2. For all G-homomorphisms A → B there exist canonical maps Hi(G,A) → Hi(G,B)
for all i ≥ 0;

3. Given a short exact sequence 0 → A → B → C → 0 of G-modules, there exists an
infinitely long exact sequence of abelian groups, starting from H0(G,A)

...→ Hi(G,A)→ Hi(G,B)→ Hi(G,C)→ Hi+1(G,A)→ ...
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We will now work towards setting up the necessary tools in order to create these groups.
Note that for every group G, we have the ring Z[G] whose ring structure follows immediately
from the multiplicative structure of G; 0 is defined as the empty sum, 1 as the identity
element of G, and we have∑

agg +
∑

bgg =
∑

(ag + bg)g and
∑

ag1g1 ·
∑

bg2g2 =
∑
g1∈G

∑
g2∈G

ag1bg2g1g2.

Lemma 3.5. Let G be a group. Then every G-module can be seen as a Z[G]-module.

Proof. The group ring Z[G] contains all elements of the form
∑
agg with ag ∈ Z, g ∈ G

and ag = 0 for almost all g ∈ G. Now we see that every G-module A can be seen as a
Z[G]-module by noting that from g(a+ b) = ga+ gb for all a, b ∈ A, g ∈ G it follows that A
is left and right associative and has a unique identity.

Definition 3.6. Let R be a ring, and A be an R-module. A (cohomological) complex A•

of R-modules is a sequence of R-module homomorphisms

... Ai Ai+1 Ai+2 ...di−1 di di+1 di+2

for all i ∈ Z such that di+1 ◦ di = 0 for all i.

Note that a cohomological complex is not necessarily an exact sequence, it only says
that Im(di) ⊆ ker(di+1), not that they are equal. We introduce the following notation.

Definition 3.7. Zi(A•) := ker(di), Bi(A•) := Im(di−1), Hi(A•) := Zi(A•)/Bi(A•)

We now see that a complex is an exact sequence precisely when Hi(A•) = 0 for all i ∈ Z.

Definition 3.8. A morphism of complexes φ : A• → B• is a collection of morphisms
φi : Ai → Bi such the following diagrams commute for all i.

Ai Ai+1

Bi Bi+1

diA

φi φi+1

diB

A short exact sequence of complexes is a sequence 0 → A• → B• → C• → 0 such that the
sequences 0→ Ai → Bi → Ci → 0 are exact for all i ∈ Z.

Note that any morphism of complexes A• → B• gives rise to maps Hi(A•) → Hi(B•).
The following lemma is a very important tool in (co)homological algebra.

Lemma 3.9 (Snake Lemma). Given a commutative diagram of G-modules,

A B C 0

0 A′ B′ C ′

α β γ

with exact rows, there is an exact sequence

ker(α)→ ker(β)→ ker(γ)→ coker(α)→ coker(β)→ coker(γ).
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Proposition 3.10. Let 0 → A• → B• → C• → 0 be a short exact sequence of complexes
of R-modules. Then there exists a long exact sequence

0→ H0(A•)→ H0(B•)→ H0(C•)→ H1(A•)→ H1(B•)→ ...

where the map Hi(C•)→ Hi+1(A•) is denoted by δi and called the boundary map.

Proof. The short exact sequence of complexes gives us the following commutative diagram
of G-modules.

0 Ai Bi Ci 0

0 Ai+1 Bi+1 Ci+1 0

diA diB diC
(1)

The fact that

... Ai Ai+1 Ai+2 ...di−1 di di+1 di+2

is a complex means that Bi(A•) = Im(di−1) ⊆ ker(di) and moreover that Im(di) ⊆
ker(di+1) = Zi+1(A•). We thus see that diA induces a map Ai/Bi(A•) → Zi+1(A•) and
therefore the above commutative diagram (1) can be written as

Ai/Bi(A•) Bi/Bi(B•) Ci/Bi(C•) 0

0 Zi+1(A•) Zi+1(B•) Zi+1(C•)

diA diB diC

Now note that ker(diA) is exactly Zi(A•)/Bi(A•) and that coker(diA) is equal to
Zi+1(A•)/Bi+1(A•). We thus see that the snake lemma gives us an exact sequence

Hi(A•)→ Hi(B•)→ Hi(C•)→ Hi+1(A•)→ Hi+1(B•)→ Hi+1(C•).

Note that H0(A•)→ H0(B•) is injective since H0(A•) = AG, H0(B•) = BG and
0 → A → B → C → 0 is exact. This gives us the first term of the long exact sequence.
Putting these sequences together for all i ∈ Z≥0 gives the proof of this proposition.

Definition 3.11. A projective R-module is a module P such that for every surjection
α : A → B of R-modules, the natural map Hom(P,A) → Hom(P,B) sending λ to α ◦ λ is
surjective.

The following lemma provides us with a set of projective R-modules.

Lemma 3.12. R itself is projective and consequently, every free R-module is projective.

Proof. Let f : R→ B be a homomorphism, and α : A→ B a surjection. Choose an element
a0 in A such that α(a0) = f(1). Then by the properties of a ring homomorphism we see
that the map sending R → A, 1 7→ a0 satisfies λ ◦ α = f and thus that R is a projective
R-module. Now, if both P1 and P2 are projective R-modules, it follows from compatibility
of Hom-groups with direct sums in the first variable that P1⊗P2 is also a projective module,
which completes the proof.

For each R-module A there exist projective resolutions, which are infinite exact sequences
...→ P2 → P1 → P0 → A→ 0 with Pi projective. We denote the map Pi+1 → Pi by pi+1.
Using the definitions and tools stated above, we can now construct the groups that fulfill
the requirements from Proposition 3.4.
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Definition 3.13. Let G be a group and A be a G-module. Take a projective resolution
P• = (...→ P2 → P1 → P0) of the trivial G-module Z. Consider the sequence HomG(P•, A)
defined by

HomG(P0, A)→ HomG(P1, A)→ HomG(P2, A)→ ...

where the maps HomG(Pi, A) → HomG(Pi+1, A) are defined by λ 7→ λ ◦ pi+1. Because P•
is a complex of G-modules we see that HomG(P•, A) is a complex of abelian groups. We
write HomG(Pi, A) for the i-th term. We then define the i-th cohomology group to be

Hi(G,A) := Hi(HomG(P•, A)) for i ≥ 0.

Theorem 3.14. Every commutative diagram of short exact sequence of G-modules

0 A B C 0

0 A′ B′ C ′ 0

induces a corresponding commutative diagram of long exact sequences of cohomology
groups

Hi−1(G,C) Hi(G,A) Hi(G,B) Hi(G,C) Hi+1(G,A)

Hi−1(G,C ′) Hi(G,A′) Hi(G,B′) Hi(G,C ′) Hi+1(G,A′)

Theorem 3.15. The groups Hi(G,A) defined above are independent of the projective reso-
lution P• chosen, and they satisfy the requirements 1-3 from the beginning of this subsection.

Proof. See [GS17, Proposition 3.1.9].

3.2 The standard resolution

We will now consider an explicit projective resolution that will give us some more intuition
for cohomology groups and hopefully make them a little less abstract. Since Theorem 3.15
tells us that the cohomology groups Hi(G,A) are independent of the chosen projective
resolution, we will work with an intuitive resolution. Lemma 3.12 tells us that any free
R-module is projective, so it makes sense to choose a free resolution of which we can easily
prove that it is exact.

Definition 3.16. Let G be a group. Then the standard resolution of Z by G-modules is
the sequence

... Z[Gn+1] Z[Gn] ... Z[G2] Z[G] Z 0δn+1 δn δn−1 δ2 δ1 δ0 (2)

where the boundary maps are given by δn(g0, ..., gn) :=
n∑
i=0

(−1)i(g0, ..., gi−1, gi+1, ...gn)

and the map δ0 sends each g ∈ G to 1. Note that δ0 can be extended to the augmentation
map ε : Z[G]→ Z, sending

∑
agg →

∑
ag, which we will encounter a few more times.

Lemma 3.17. The standard resolution of Z by G-modules is exact.
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Proof sketch. We need to show that Im(δi+1) = ker(δi). Writing out δi ◦ δi+1 show us that
δi ◦ δi+1 = 0 for all i because of the factor (−1)i in the definition of δn. Denote for each
integer m by χ(m) its residue class modulo 2. Then we have that

δn(σ0, ..., σn) = (χ(1)σ1−χ(n−0)σ0, χ(2)σ2−χ(n−1)σ1, ..., χ(n)σn−χ(n− (n−1))σn−1).

Then δn−1 ◦ δn has as j-th entry

χ(j)(χ(j + 1)σj+1 − χ(n− j)σj)− χ(n− 1− j)(χ(j)σj − χ(n− (j − 1))σj−1),

which is equal to zero. We thus have that Im(δi+1) ⊆ ker(δi). To show the other inclusion we
need an auxiliary map hi, sending Z[Gi+1]→ Z[Gi+2] by sending (g0, ...gi) 7→ (1, g0, ..., gi).
Writing out these maps gives that δi+1 ◦ hi + hi−1 ◦ δi = idZ[Gi+1]. Now from this it follows
that ker(δi) ⊆ Im(δi+1) and thus that the standard resolution is exact.

Since every free Z-module is projective, we see that the standard resolution of Z by
G-modules is indeed a projective resolution, and we can use Definition 3.13 to create the
corresponding cohomology groups. We can now give an alternative definition of cohomology
groups.

Definition 3.18. Let G be a group and A be a G-module. The standard resolution of Z
by G-modules (2) induces an exact sequence

0 HomZ[G](Z[G], A) HomZ[G](Z[G2], A) HomZ[G](Z[G3], A) ...d1 d2 d3

Here the maps di are the maps that send λ ∈ HomZ[G](Z[Gi], A) to λ◦δi ∈ HomZ[G](Z[Gi+1], A).
Since the resolution (2) is exact, we know that Im(di−1) ⊆ ker(di) and we can define the
cohomology group Hi(G,A) as ker(di)/Im(di−1).

In order to look at some explicit calculations of cohomology groups, we need a slightly
modified resolution. This is called the inhomogeneous cochain resolution, and it looks at the
modules Z[G] a bit differently. Consider the elements [g1, ..., gi] := (1, g1, g1g2, ..., g1g2...gi)
for any g1, g2, ..., gi ∈ G. They form a basis of Z[Gi+1] as a free Z[G]-module. The maps δi

act on this basis by sending

[g1, ..., gi] 7→ g1[g2, ..., gi] +

i∑
j=1

(−1)j [g1, ..., gjgj+1, ..., gi] + (−1)i+1[g1, ..., gi−1].

We then see that the map di−1 : HomG(Z[Gi−1], A)→ HomG(Z[Gi], A) sends

f(g1, ..., gi−1) 7→ g1f(g2, ..., gi) +

i∑
j=1

(−1)jf(g1, ..., gjgj+1, ..., gi) + (−1)i+1f(g1, ..., gi−1).

Using this, we can recompute the first two cohomology groups. We see that d0 sends

HomG(Z, A) ∼= A→ HomG(Z[G], A), a 7→ a(g) := ga− a,

and therefore that the kernel of d0 consists of exactly those a ∈ A that are stable under
the G-action on A. In that case we would have that ga = a for all g ∈ G and thus that
ga − a = 0 for all g ∈ G. We thus have that ker(d0) = AG. Since the image of the map
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0→ Z is exactly {0}, we see that H0(G,A) = ker(d0)/Im(d−1) = ker(d0) = AG.

Note that the image of d0 can be written as

{f : G→ A | ∃ a ∈ A : f(g) = ga− a ∀ g ∈ G}.

The map d1 sends

HomG(Z[G], A) ∼= A→ HomG(Z[G2], A) f(g) 7→ f(g, h) := gf(h)− f(gh) + f(g).

From this we see that ker(d1) = {f : G → A | f(gh) = gf(h) + f(g) for all g, h ∈ G} and
we can use that to prove the following proposition.

Proposition 3.19. Let G be a group, and A be a trivial G-module. Then H1(G,A) ∼=
Hom(Z[G], A).

Proof. From the above we see that when A is a trivial G-module, that means that Im(d0)
is trivial: if f : g 7→ ga − a then f sends all of G to 0 and thus is the zero map itself.
By definition, every morphism f : G → A has f(gh) = f(g) + f(h), and since G acts
trivially on A we see that this means that every morphism f : Z[G]→ A belongs to ker(d1).
Combining these results gives that H1(G,A) = ker(d1)/Im(d0) = HomG(Z[G], A).

The construction we used above to get cohomology groups out of the standard resolution
for Z can also be used to create homology groups Hi(G,A). We will stick to a few definitions
on homology groups. One of the reasons to bring them up here is to motivate the definition
of Tate cohomology: when using that definition there is no difference between homology
and cohomology groups. Moreover, for our main theorem (Theorem 4.17) some knowledge
of some homology groups (especially the group H1(G,A)) will be needed.

We construct the homology groups Hi(G,A) by again using the standard resolution (2).
Instead of applying the contravariant functor HomZ[G](•, A) to the resolution, we will now
apply the covariant functor • ⊗Z[G] A to get a chain complex of Z-modules

... Z[G3]⊗Z[G] A Z[G2]⊗Z[G] A Z[G]⊗Z[G] A 0,
d3 d2 d1

where the maps dn are defined by sending

(g0, ..., gn)⊗ a ∈ Z[Gn+1]⊗Z[G] A to δn(g0, ..., gn)⊗ a ∈ Z[Gn]⊗Z[G] A,

where δn is the map defined in the standard resolution of Z. In order for this to also
work for non-commutative groups, we need to view Z[Gn] as right G-modules instead of left
G-modules. We can now define homology groups analogous to Definition 3.18.

Definition 3.20. We define the homology groups Hi(G,A) as ker(di)/Im(di+1) where the
maps di are induced by the standard resolution of Z by setting di = δi ⊗ id. Again, this
group is well-defined since Im(di+1) ⊆ ker(di) by exactness of (2).

Analogously to cohomology group, short exact sequences of G-modules induce long exact
sequences of homology groups.

Theorem 3.21. Every short exact sequence of G-modules 0→ A→ B → C → 0 induces a
long exact sequence of homology groups

...→ H1(G,C)→ H0(G,A)→ H0(G,B)→ H0(G,C)→ 0
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and any commutative diagram of short exact sequences of G-modules

0 A B C 0

0 A′ B′ C ′ 0

induces a corresponding commutative diagram of long exact sequences of homology groups

... Hi−1(G,C) Hi(G,A) Hi(G,B) Hi(G,C) ...

... Hi−1(G,C ′) Hi(G,A
′) Hi(G,B

′) Hi(G,C
′) ...

Definition 3.22. Let G be a group. Recall from Definition 3.16 that the augmentation
map ε : Z[G] → Z is the ring homomorphism sending

∑
g agg 7→

∑
g ag. We define the

augmentation ideal IG to be the kernel of the augmentation map. IG is a free Z-module
with basis {g − 1 : g ∈ G}.

Definition 3.23. For a G-module A we define the group of co-invariants to be
AG := A/IGA. It is the largest trivial G-module that is a quotient of A.

Note that IG is exactly the annihilator of the Z[G]-module Z. We thus have that
Z ⊗Z[G] A ∼= A/IGA = AG. On the other hand, Z ⊗Z[G] A is precisely H0(G,A). We thus
have that

H0(G,A) = AG and H0(G,A) = AG.

3.3 Tate cohomology

We are now ready to define cohomology groups. As stated before, one of the main advantages
of Tate cohomology groups is that there is no distinction between homology and cohomology
groups. Moreover, we will see that a short exact sequence of G-modules induces a long exact
sequence of G-modules that is infinitely long on both sides (Theorem 3.26). First, we need
the following definition.

Lemma 3.24. Let A be a G-module and NG : A → A be the norm map, sending a to
NGa =

∑
g∈G(ga). Then IGA ⊆ ker(NG) and Im(NG) ⊆ AG. Thus NG induces a morphism

N∗G from AG → AG of trivial G-modules.

We will now define Tate cohomology groups. We will see that the only difference between
the cohomology and homology groups defined in the previous subsections and the Tate
groups is what happens around the degree 0 groups.

Definition 3.25. Let A be a G-module of a finite group G. Then the Tate homology and
cohomology groups are defined as follows.

Ĥn(G,A) :=

{
coker(N∗G) = AG

NGA
for n = 0;

Hn(G,A) for n > 0;
Ĥn(G,A) :=

{
ker(N∗G) = ker(NG)

IG·A for n = 0;

Hn(G,A) for n > 0.

Moreover, each Tate homology group can be seen as a Tate cohomology group and vice
versa by

Ĥ−n(G,A) := Ĥn−1(G,A) and Ĥ−n(G,A) := Ĥn−1(G,A).
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We will now see that these Tate cohomology group give a stronger version of the property
described in Proposition 3.4.3 and Theorem 3.21.

Theorem 3.26. Let G be a finite group. Every short exact sequence of G-modules

0 A B C 0α β

induces a infinitely long exact sequence of Tate (co)homology groups

...→ Ĥn(G,A)→ Ĥn(G,B)→ Ĥn(G,C)→ Ĥn+1(G,A)→ Ĥn+1(G,B)→ ...

Note that this sequence is infinitely long in both directions, as opposed to the sequences stated
in Theorems 3.10 and 3.21. Moreover, commutative diagrams of short exact sequences of G-
modules induce commutative diagrams of long exact sequences of Tate (co)homology groups.

Proof. First, note that it suffices to prove exactness at the terms Ĥ0(G, •) and Ĥ0(G, •)
since all other terms are equal to what we have proved before. Therefore, we consider the
following diagram.

H1(C,G) AG BG CG 0

0 AG BG CG H1(A,G).

δ0 α0

N∗G

β0

N∗G N∗G

α0 β0
δ0

(3)

Note that the upper row is just the regular homology exact sequence and the lower row
is the cohomology exact sequence, since AG = H0(G,A) and AG = H0(G,A). We see that
this diagram commutes, so we can apply the snake lemma (Lemma 3.9) to it. This then
gives the following exact sequence:

Ĥ0(G,A) Ĥ0(G,B) Ĥ0(G,C)

Ĥ0(G,A) Ĥ0(G,B) Ĥ0(G,C).

α̂0 β̂0

δ

α̂0 β̂0

In order to reach our goal we need to show that both Im(δ̂0) = ker(α0), where δ̂0 :

Ĥ1(G,C) → Ĥ0(G,A), and Im(β̂0) = ker(δ̂0), where δ̂0 : Ĥ0(G,C) → Ĥ1(G,A). For
the first equality, note that since α0 is injective. This follows from (3), as we have that
ker(α0) ⊆ AG is sent to zero by N∗G. Thus ker(α0) ⊆ ker(N∗G) and since Ĥ0(G,A) = ker(N∗G)
we see that ker(α0) = ker(α̂0).

For the second equality, note that from the commutative diagram (3) we see that β0 is
surjective, thus Im(N∗G) ⊆ Im(β0). Since Ĥ0(G,C) = CG/Im(N∗G) we have that

Im(β̂0) = Im(β0)/Im(N∗G) = ker(δ)0/Im(N∗G) = ker(δ̂0).

We thus see that the sequence is exact at all places and we have proven the theorem.

Proposition 3.27. Let G a finite group and let A a free Z[G]-module. Then Ĥn(G,A) = 0
for all n ∈ Z.

Proof. See [Bro12, Section VI.8].
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Proposition 3.28. Let G be a finite group of order pn for some prime p and A a G-module.
Then if

Ĥi(G,A) = Ĥi+1(G,A) = 0

for some integer i, then Ĥj(G,A) = 0 for all j ∈ Z.

Proof. See [Bro12, Theorem VI.8.5].

We will now dive into the case whereG is a cyclic group of finite order. Recall from Defini-
tion 3.22 that the augmentation ideal IG is a free Z[G]-module generated by {g− 1 | g ∈ G}.
Denote by g0 a generator of G. Then any element g ∈ G is some power of g0 and g−1 = gj0−1
can then be written as some product of g0 − 1 times an element of Z[G]. We may thus con-
clude that the augmentation ideal IG is principal and generated by g0 − 1 in the ring Z[G].
For any G-module A we then get the following projective resolution:

... Z[G] Z[G] Z[G] Z[G] Z[G] Z 0,
g0−1 NG g0−1 NG g0−1 ε (4)

which we call the free resolution. This is an exact sequence since the augmentation ideal IG
is exactly equal to the principal ideal (g0− 1), so we have that Im(N∗G) = ker(g0− 1). Since
G is cyclic, Z[G] is an abelian group so left and right Z[G]-modules can be treated equally.
We can view the homology group Z[G]⊗Z[G]A as a G-module via g(h⊗a) = gh⊗a = h⊗ga
and the cohomology group HomZ[G](Z[G], A) as a G-module via (gϕ)(h) = ϕ(gh). This
gives us the following theorem.

Theorem 3.29. Let G be a finite cyclic group with generator g and let A be a G-module.
For all n ∈ Z we have the following isomorphisms.

Ĥ2n(G,A) ∼= Ĥ2n−1(G,A) ∼= Ĥ0(G,A) and Ĥ2n(G,A) ∼= Ĥ2n−1(G,A) ∼= Ĥ0(G,A).

Proof. We have canonical G-module isomorphism:

HomZ[G](Z[G], A)→ A, ϕ 7→ ϕ(1) and A→ Z[G]⊗Z[G] A, a 7→ 1⊗ a.

We can see that these morphisms are isomorphisms by noting that HomZ[G](Z[G], A) and
Z[G]⊗Z[G] A as G-modules, as described above. We have the free resolution (4). Applying
the contravariant functor HomZ[G](•, A) to this, we get

0 A A A A ... .
g−1 NG g−1 NG

Similarly tensoring with the covariant functor • ⊗Z[G] A gives

... A A A A A 0.
g−1 NG g−1 NG g−1

We can now use this to compute Hn(G,A) and Hn(G,A). We know that ker(g − 1) = AG
so we see that

H2n(G,A) ∼= H2n−1(G,A) = ker(g − 1)/Im(NG) = coker(N∗G) = Ĥ0(G,A).

Analogously we see

H2n(G,A) ∼= H2n−1(G,A) = ker(NG)/Im(g − 1) = ker(N∗G) = Ĥ0(G,A),

which gives the desired result.
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From the above theorem, we see that whenG is a finite cyclic group, all Tate (co)homology
groups are determined by Ĥ0(G,A) and Ĥ0(G,A). This fact will be extremely useful in the
rest of this chapter and will be one of the key insights needed for the fundamental theorem
of abstract class field theory. We have the following corollary.

Corollary 3.30. Let G a finite cyclic group. Given an exact sequence of G-modules

0 A B C 0,α β
we have a corresponding exact hexagon

Ĥ0(G,A) Ĥ0(G,B)

Ĥ0(G,C) Ĥ0(G,C)

Ĥ0(G,B) Ĥ0(G,A)

α̂0

β̂0δ̂0

δ̂0β̂0

α̂0

3.4 Maps for subgroups

The goal of this subsection is to construct a number of maps that relate the cohomology
groups of a group G with those of a subgroup H of G. There are three maps that we will
cover here, called restriction (sending Hi(G,A) to Hi(H,A)) corestriction (going in the
opposite direction) and inflation (sending Hi(G/H,AH) to Hi(G,A)). We will then look
at some relations between those maps, that will give us useful properties of cohomology
groups. We will first state these maps for regular cohomology and homology groups, and
then prove that they extend to maps of Tate cohomology groups. For the first part, we will
follow [GS17].

We start with the following definition that will help us define the desired maps. When
we say that G acts canonically on Z[G] we mean that g · (

∑
nigi) =

∑
ni(g · gi) where g · gi

is the group action of G.

Definition 3.31. Let H be a subgroup of G and A an H-module. Then Z[G] with canonical
G-action is an H-module too, which allows the following definition.

MG
H (A) := HomH(Z[G], A)

where the action of an element σ ∈ G on an H-homomorphism φ : Z[G] → A is given
by σφ(g) = φ(σg) for g ∈ Z[G]. Note that MG

H (A) is a G-module, since this G-action is
well-defined.

Lemma 3.32. Let M be any G-module. Then using the definitions above there exists a
canonical isomorphism

HomG(M,MG
H (A))→ HomH(M,A)

sending a G-homomorphism m 7→ φm on the left to the H-homomorphism m 7→ φm(1) on
the right.

Lemma 3.33 (Shapiro’s lemma). Let H be a subgroup of G and let A be an H-module.
Then for all i ≥ 0 we have

Hi(G,MG
H (A)) ∼= Hi(H,A).
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We now have enough tools to define the restriction and corestriction maps.

Definition 3.34. Let G be a group, A be a G-module, H be a subgroup of G. Then there
are natural maps of G-modules

A ∼= HomG(Z[G], A)→ HomH(Z[G], A) = MG
H (A),

where the first isomorphism is given by mapping a ∈ A to the unique G-homomorphism
sending 1 7→ a and the second by noting that any G-homomorphism can be seen as an
H-homomorphism. Taking cohomology and applying Shapiro’s lemma then gives a map

Res : Hi(G,A)→ Hi(H,A)

for all i ≥ 0, called the restriction map.

Note that when applying the restriction map for i = 0 we get the natural inclusion
AG ⊆ AH . There is also a map in the opposite direction when H is a subgroup of finite
index.

Definition 3.35. Let H be a subgroup of G of finite index n and let A be a G-module. Let
ρ1, ..., ρn be a system of left coset representatives of H in G. Given an H-homomorphism
φ : Z[G]→ A, define a new map Z[G]→ A by

φGH : x 7→
n∑
j=1

ρjφ(ρ−1
j x).

This map does not depend on the choice of ρj and also is a G-homomorphism because for
σ ∈ G we get that φGH(σx) = σ(φGH(x)). We have thus constructed a well-defined map

HomH(Z[G], A)→ HomG(Z[G], A), φ 7→ φGH .

Again by taking cohomology and using Shapiro’s lemma this gives us a map

Cor : Hi(H,A)→ Hi(G,A)

for all i ≥ 0, which we call the corestriction map.

Proposition 3.36. Let G be a group, H be a subgroup of finite index n and A be a G-
module. Then the composite maps

Cor ◦ Res : Hi(G,A)→ Hi(G,A)

are given by multiplication by n for all i ≥ 0.

Theorem 3.37. The restriction and corestriction maps defined above extend to maps of
Tate cohomology groups. Consequently, Proposition 3.36 also holds for Tate cohomology
groups.

Proof. Note that we only need to prove this for the groups Ĥ0(G,A) and Ĥ0(G,A) since
all other groups are equal. We will start with the restriction map.

On H0, the restriction map is given by the inclusion map, since it sends H0(G,A) = AG

to H0(H,A) = AH . In order to prove that this gives a well-defined map from

Ĥ0(G,A) = AG/NGA to Ĥ0(H,A) = AH/NHA
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we need to show that the restriction map on H0 sends NGA to NHA. This follows imme-
diately from the definition: let a ∈ NGA, then for some b ∈ A we have

a =
∑
g∈G

gb =
∑
h∈H

h
∑

si∈G/H

sib =
∑
h∈H

hc ∈ NHA

where c ∈ A since A is a G-module and all s ∈ G/H are elements of G. We thus see that
Res : H0(G,A)→ H0(H,A) induces a map Res : Ĥ0(G,A)→ Ĥ0(H,A).

On H0 we have that the restriction map is given by

H0(G,A)→ H0(H,A), a+ IGA 7→ N−1
G/Ha+ IHA where N−1

G/H : a→
∑

s∈G/H

s−1a.

The map N−1
G/H is independent of the choice of coset representatives s ∈ G/H since

((gh)−1 − g−1)a = (h−1 − 1)g−1a ∈ IHA.

Since H0(G,A) = A/IGA and Ĥ0(G,A) = ker(NG)/IGA we need to show that the restric-
tion map on H0 maps ker(NG) + IGA to ker(NH) + IHA. Let a ∈ ker(NG). Then a+ IGA
is mapped to

∑
s∈G/H

s−1a+ IHA and

NH(
∑

s∈G/H

s−1a) =
∑
h∈H

∑
s∈G/H

s−1a =
∑
g∈G

a = 0.

We thus see that a ∈ ker(NG) is mapped to ker(NH) + IHA and we may conclude that
Res : H0(G,A)→ H0(H,A) induces a map Res : Ĥ0(G,A)→ Ĥ0(H,A).

For the corestriction maps we proceed analogously. The map Cor : H0(H,A) →
H0(G,A) sends a ∈ AH to NG/Ha in AG. In order to show that this induces a map

sending Ĥ0(H,A)→ Ĥ0(G,A) we need to show that NHA is sent to NGA. We see that for
such a ∈ NHA we have that

a 7→ NG/Ha =
∑

s∈G/H

sa =
∑

s∈G/H

s
∑
h∈H

hb =
∑
g∈G

b ∈ NGA

for some b ∈ A. We may thus conclude that Cor : H0(H,A) → H0(G,A) induces a well-
defined map Cor : Ĥ0(H,A)→ Ĥ0(G,A).

Finally we need to check the corestriction map on H0. We see that Cor : H0(H,A) →
H0(G,A) sends A/IHA to A/IGA and since IHA ⊆ IGA this is just the quotient map. Now
we see that ker(NH) ⊆ ker(NG) since if∑

h∈H

ha = 0 then
∑
g∈G

ga =
∑

s∈G/H

s
∑
h∈H

ha =
∑

s∈G/H

0 = 0.

We thus conclude that Cor : H0(H,A) → H0(G,A) induces a map Cor : Ĥ0(H,A) →
Ĥ0(G,A) of Tate cohomology groups, which finishes our proof.
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The last of the three maps that we want to define here is the following.

Definition 3.38. Let G be a group and H be a normal subgroup. Then AH is again
a G-module and H acts trivially on it, so AH is a G/H-module. Take a projective res-
olution P• of Z as a trivial G-module and a projective resolution A• of Z as a trivial
G/H-module. There exists a morphism P• → Q• of complexes of G-modules, which leads
to maps HomG/H(Q•, A

H)→ HomG(P•, A
H). Taking cohomology and composing with the

natural map AH → A we get the inflation map for all i ≥ 0,

Inf : Hi(G/H,AH)→ Hi(G,A).

The following proposition tells us a bit more about the relation between the inflation
map and the restriction map. This sequence is therefore called the inflation-restriction exact
sequence.

Proposition 3.39. Let G be a group, H a normal subgroup and A a G-module. There is a
natural map τ : H1(H,A)G/H → H2(G/H,AH) fitting into the exact sequence

0 H1(G/H,AH) H1(G,A) H1(H,A)G/H

H2(G/H,AH) H2(G,A).

Inf Res

τ Inf

Proof. See [GS17, Proposition 3.3.14].

Moreover, we have the following higher degree inflation-restriction sequence, that we will
need when proving the axioms of class field theory.

Proposition 3.40. Again, let G be a group, H a normal subgroup, A a G-module, and
i > 1 an integer. Assume that the groups Hj(H,A) are trivial for a ≤ j ≤ i−1. Then there
is a natural map τi,A : Hi(H,A)G/H → Hi+1(G/H,AH) fitting into the exact sequence

0 Hi(G/H,AH) Hi(G,A) Hi(H,A)G/H

Hi+1(G/H,AH) Hi+1(G,A).

Inf Res

τi,A Inf

Proof. See [GS17, Proposition 3.3.17].

Since the inflation-restriction sequences only involve cohomology groups of positive de-
gree, replacing the cohomology groups by Tate cohomology groups makes no difference.
Proving the following statement goes analogously to the proof for restriction and corestric-
tion maps.

Proposition 3.41. The inflation map of (co)homology groups induces an inflation map of
Tate (co)homology groups with the same properties.
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3.5 Cup products

The last cohomological technique that we will need to state the main theorem in the next
chapter is that of a cup product. A cup product will give a map from the Tate cohomology
groups of two G-modules A and B to the Tate cohomology group of A ⊗ B. It is exactly
this construction that will enable us to state the map needed in the main theorem of class
field theory (Theorem 4.17). We will follow [GS17] in our construction.

Let A• and B• be two complexes of abelian groups. We then define the tensor product
T • = A• ⊗B• by considering the following double complex.

... ... ...

... Ai−1 ⊗Bj+1 Ai ⊗Bj+1 Ai+1 ⊗Bj+1 ...

... Ai−1 ⊗Bj Ai ⊗Bj Ai+1 ⊗Bj ...

... Ai−1 ⊗Bj−1 Ai ⊗Bj−1 Ai+1 ⊗Bj−1 ...

... ... ...

δhi−1,j+1 δhi,j+1

δhi−1,j

δvi−1,j

δhi,j

δvi,j δvi+1,j

δhi−1,j−1

δvi−1,j−1

δhi1,j−1

δvi,j−1 δvi+1,j−1

The horizontal maps δhi,j are given by δiA⊗ id and the vertical maps δvi,j by id⊗ (−1)iδjB ,

with δi as defined in Definition 3.16. The squares are then anticommutative, meaning that
δhi,j+1 ◦δvi,j = −δvi+1,j ◦δhi,j . The total complex associated with this double complex, denoted
by T •, has n-th component

Tn =
⊕
i+j=n

Ai ⊗Bj

with maps δn : Tn → Tn+1, where δn acts on Ai⊗Bj as δhi,j + δvi,j . Since the squares above

are anticommutative, we see that δn+1 ◦ δn = 0 which means that T • is indeed a complex.

Definition 3.42. Let A•, B• be two complexes. Then we define A•⊗B• to be the complex
T • as described above.

Let C,D be twoG-modules andA•, B• two complexes. Consider the complexes Hom(A•, C)
and Hom(B•, D) whose degree-i terms are Hom(A−i, C) and Hom(B−i, D), and where the
δ maps are those induced by the complexes A• and B•. The goal is now to construct a
product operation

Hi(Hom(A•, C))⊗Hj(Hom(B•, D))→ Hi+j(Hom(A• ⊗B•, C ⊗D)).

where the notation Hi(X) is that of Definition 3.7. We will do so as follows.

Definition 3.43. Let α : A−i → C and β : B−j → D where i + j = n. Then α ⊗ β
is a homomorphism A−i ⊗ B−j → C ⊗ D, and therefore defines a degree i + j term in
Hom(A• ⊗B•, C ⊗D) via the diagonal embedding

Hom(A−i ⊗B−j , C ⊗D)→ Hom(
⊕

k+l=i+j

A−k ⊗B−l, C ⊗D).
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Whenever α ∈ Zi(Hom(A•, C)) and β ∈ Zj(Hom(B•, D)) we see that

α⊗ β ∈ Zi+j(Hom(A• ⊗B•, C ⊗D)),

and similarly for Bi,Bj , which concludes the construction of this map.

The following proposition will be necessary to create a product of cohomology groups of
different G-modules.

Proposition 3.44. Let G be a group and let P• be a complex of G-modules which is a
projective resolution of the trivial G-module Z. Then P• ⊗ P• is a projective resolution of
the trivial Z[G×G]-module Z.

Proof. See [GS17, Proposition 3.4.3]

Definition 3.45. Let A,B be G-modules, let P• a projective resolution of the trivial G-
module Z. Using the above construction with A• = B• = P• we get

Hi(Hom(P•, A))×Hi(Hom(P•, B))→ Hi+j(Hom(P• ⊗ P•, A⊗B)).

By Proposition 3.44 we know that P•⊗P• is a projective resolution of Z as a G×G-module,
so by taking Tate cohomology we get

Ĥi(G,A)× Ĥj(G,B)→ Ĥi+j(G×G,A⊗B).

Using the fact that we can embed G diagonally into G×G, we can see G as a subgroup of
G × G, which gives us a restriction map sending Ĥi+j(G × G,A ⊗ B) to Ĥi+j(G,A ⊗ B).
Composing these two maps gives us the desired map, which we call the cup product and
denote by

∪ : Ĥj(G,A)× Ĥj(G,B)→ Ĥi+j(G,A⊗B)

Proposition 3.46. Suppose G is a finite group. Then the cup product

∪ : Ĥi(G,A)× Ĥj(G,B)→ Ĥi+j(G,A⊗B)

has the following properties for all i, j ∈ Z and G-modules A,B:

1. The homomorphisms are functorial in A and B, meaning that for a morphism A → A′

of G-modules, the corresponding diagram commutes, and similarly in the second vari-
able.

2. When i = j = 0, the homomorphism is just the natural map AG ⊗BG → (A⊗B)G.

3. Suppose that 0 → A′ → A → A′′ → 0 is exact and so is 0 → A′ ⊗ B → A ⊗ B →
A′′ ⊗B → 0 (which is true for for example flat modules). Then (δa′′) ∪ b = δ(a′′ ∪ b)
for all a′′ ∈ Ĥp(G,A′′) and b ∈ Ĥq(G,B), where δ is the connecting homomorphism
as defined in Proposition 3.10.

4. Suppose that 0 → B′ → B → B′′ → 0 is exact and so is 0 → A ⊗ B′ → A ⊗ B →
A⊗B′′ → 0 . Then a∪(δb′′) = (−1)pδ(a∪b′′) for all a ∈ Ĥp(G,A) and b ∈ Ĥq(G,B′′).

Proof. For the first two items, see [GS17, Remark 3.4.6] and for the last two see [GS17,
Proposition 3.4.8] .
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The last property of cup products that we will need is the following.

Proposition 3.47. Given a morphism of G-modules A⊗B → C, we get pairings

Ĥi(G,A)× Ĥj(G,B)→ Ĥi+j(G,C)

for all i and j, by composing the cup-product with the natural map Ĥi+j(G,A ⊗ B) →
Ĥi+j(G,C).

As an example of a place where we will encounter cup products, we will state the following
theorem. It essentially tells us the same as Theorem 3.29, but uses cup products to create
the isomorphisms between Tate cohomology groups of different degrees.

Let G be a finite cyclic group of order n. We start by looking at the exact sequence

0→ Z→ Q→ Q/Z→ 0.

Taking cohomology gives a connecting homomorphism Ĥr(G,Q/Z) → Ĥr+1(G,Z). We
denote by δ the map Ĥ1(G,Q/Z) → Ĥ2(G,Z). All groups Ĥr(G,Q) become trivial, as
Ĥr(G,Q) is torsion whenever G is a finite group. Now since G is a cyclic group of order n,
the only possible automorphism on Q is the identity automorphism, so Ĥr(G,Q) is trivial.
This gives us an isomorphism δ : H1(G,Q/Z) → Ĥ2(G,Z). On the other hand, we have
that Q/Z is a trivial G-module when G is a cyclic group, so Theorem 3.19 tells us that
H1(G,Q/Z) ∼= Hom(G,Q/Z).

Definition 3.48. Let G be a finite group. We call an element χ of the group Ĝ =
Hom(G,Q/Z) ∼= Ĥ1(G,Q/Z) a character.

Theorem 3.49. Let G be a finite cyclic group of order n and A a G-module, and ϕ a
generator of G. Let χ : G → Q/Z be the character of G such that χ(ϕ) = 1/n. Then the
cup product with δχ gives an isomorphism for all integers i:

.. ∪ δχ : Ĥi(G,A)→ Ĥi+2(G,A), a 7→ a ∪ δχ.

Proof. See [AT68, Chapter 3, Theorem B].

We will see in Theorem 4.26 that this cup product will be very important if we want to
know more about the isomorphisms induced by class field theory.
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4 Class Field Theory

The goal of class field theory is to characterize all abelian extensions of a field k. It does
so by first investigating the maximal abelian extension of a field, and then looking at all
intermediate extensions k ⊆ F ⊆ kab. In this chapter, we will work towards proving that
there exists an isomorphism between finite quotients of the idèle class group of a global
field and the Galois group of finite abelian extensions. This isomorphism is in fact a special
case of a more general isomorphism, which we will call the main theorem of abstract class
field theory. We start by defining formations, which are the objects on which we will define
abstract class field theory. We will impose a set of conditions on these formations, and then
work towards proving an isomorphism of cohomology groups that is true for all formations
that meet these conditions. This will be our abstract main isomorphism (Theorem 4.17),
and we will analyze some of its properties.

Once we know enough about the abstract isomorphism, we can start looking at specific
formations. The goal is to get an isomorphism from the idèle class group to the Galois group
of the maximal abelian extension of a global field. As idèles consist of infinite products of
local fields, we will look at a formation of local fields first. We will show that this local
formation satisfies the stated conditions and investigate what the main isomorphism looks
like for local fields in Section 4.4. Finally, we will move on to a formation of global fields,
where we do the same as for local fields. One of our final results will be Theorem 4.74, which
tells us exactly how the Galois group of a finite abelian extension of function fields is related
to the idèle class group of the ground field. We will spend quite some time on investigating
what the map that induces the isomorphism looks like, since this will be crucial information
for our algorithm in the next chapter.

4.1 Field formations

In this section, we will introduce formations, which are the objects for which we will define
the main theorem in all generality. Formations can be seen as a generalization of the
following situation.

Let k be any field and let Ω be the separable part of an algebraic closure. Let G be the
Galois group of Ω/k, which can be infinite. Denote by Σ the set of all finite extensions of k
in Ω. Then for each F ∈ Σ, denote by GF the subgroup of G consisting of all automorphisms
of G that are the identity on F . G can be made into a topological group by taking the family
of subgroups {GF }F∈Σ as a fundamental system of open neighbourhoods of the identity.
This makes sense since all of these subgroups contain the identity. From Galois theory, we
then know that every open subgroup of G is of the form GF for some F ∈ Σ (see Theorem
1.49).

Let A be a G-module, for example Ω∗. Then for each finite extension subgroup GF we
denote by F the fixed submodule of A under GF , so AF = AGF . When A = Ω∗, we have
that AF = F ∗. For two extensions F,K of k we know that F ⊆ K if and only if GF ⊇ GK ,
and in that case K/F is an extension of degree [K : F ] = (GF : GK) with Galois group
GK/F ∼= GF /GK . This enables us to think about cohomology groups Hr(GK/F , AK), and
those are exactly the groups that we are interested in. To understand those groups better,
we will generalize the construction stated above.

Definition 4.1. A formation {G, {GF };A} consists of:
(a) A group G together with a non-empty indexed family {GF }F∈Σ of subgroups of G
satisfying the following conditions:
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1. Each member of the family {GF } is of finite index in G;

2. Each subgroup of G which contains a member of the family {GF } also belongs to the
family;

3. The intersection of two members of {GF } also belongs to {GF };

4. Any conjugate in G of a member of {GF } also belongs to {GF };

5. The intersection of all members of {GF } is the identity:
⋂
F∈Σ

GF = 1.

(b) A G-module A such that A =
⋃
F∈Σ

AGF , where AGF is the module fixed by GF .

We see that the above example, with k a field, G the Galois group of its maximal abelian
extension Ω over k, {GF } the Galois groups of the subfields k ⊆ F ⊆ Ω over k and A = Ω∗

is indeed a formation. It will turn out to be exactly the formation that will be formed when
talking about local class field theory. Unfortunately, this formation does does not help us
towards our goal when applying it to global fields. The main reason behind this is that local
fields have one prime ideal, and global fields have infinitely many prime ideals. Recall that
the goal of class field theory is to gain knowledge about the abelian extensions of a field. As
we have seen that the splitting behaviour of places largely determines a field extension (see
Theorem 1.55), we will need to embed more information about all places in our formation.
Therefore, we will construct another formation for global fields. This global formation will
eventually give us the isomorphism stated in Theorem 2.17 and a more general isomorphism
that we will use to create a ramified algorithm. Since the formations for local and global
theory look quite different, it makes sense to first prove the theory of class fields for a very
general set of formations. We will then prove that the formations that we are interested in
satisfy the needed criteria, so that we can apply the theory of class fields to those formations.
In order to talk about these general formations, we need a bit more terminology.

Definition 4.2. Let {G, {GF };A} be a formation. Then we have the following terminology.

1. G is called the Galois group of the formation, A is called the formation module;

2. The indices F are referred to as fields (even when they do not resemble fields, rings
or groups in the usual setting);

3. The submodules AF = AGF corresponding to a field F are called levels of the forma-
tion, and AF is called the F -level;

4. If F,K are two fields such that F ⊆ K (or similarly GF ⊇ GK), we say that F is a
subfield of K;

5. When F ⊆ K we say that K/F is a layer of the formation, where AF is called the
ground level and AK is the top level ;

6. The index (GF : GK) is called the degree of the layer K/F and GF /GK is the Galois
group of the layer;

7. If GK is a normal subgroup of GF we call the layer K/F normal and denote the Galois
group by GK/F . Similarly, we call the layer abelian or cyclic when the Galois group
is abelian or cyclic.
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We will not dive into the topological aspects of a formation, but whenever G′ is called
an open subgroup of G in the literature, that means that G′ is of the form GF for some
F ∈ Σ. We see that for a normal layer,

AF = AGF = (AGK )GF /GK = A
GK/F

K

meaning that the ground level of a normal layer consists exactly of the elements in the top
level that are left fixed by the Galois group of the layer.

Definition 4.3. By cohomology groups of a normal layer K/F we mean the groups

Ĥi(K/F ) = Ĥi(GK/F , AK) = Ĥi(GF /GK , A
GK ).

Note that when talking about cohomology groups in this section we will always talk about
Tate cohomology groups, and denote them by Ĥ(G,A). Moreover, note that although G is
infinite, the group GK/F is always finite since both F and K are finite extensions of k. We
can therefore apply the theory from the previous chapter here.

The purpose of formations is to study cohomology groups of all layers. Putting all layers
into one object tells us more about those layers, using the easier layers to get informa-
tion about more difficult layers. Most properties of ordinary Galois theory carry over to
formations. For example, we have the following.

Proposition 4.4. Let K/F be a normal layer of the formation, and GK/F the corresponding
Galois group. Then every subgroup of GK/F is of the form GK/E for some F ⊆ E ⊆ K.

Proof. We know that GK/F = GF /GK , so every subgroup of GK/F is of the form GK ⊆
H ⊆ GF . By property 2 of Definition 4.1 we then see that H is also a member of the family
{GF }, and thus that there is a field F ⊆ E ⊆ K such that H = GE .

In order to get the most out of the theory, we want to narrow down the formations we
work with a bit further. We will therefore state two axioms. Formations that satisfy both
axioms are called class formations, which are the objects that we are interested in.

Axiom I. Let {G, {GF };A} be a formation. Then for any normal layer K/F , we have

Ĥ1(K/F ) = 0.

Definition 4.5. A formation that satisfies Axiom I is called a field formation.

We will see that this axiom is true whenever F and K are fields and AK is the multi-
plicative group of K by Hilbert’s Theorem 90 (Theorem 4.33). This motivates the name
field formation. The following proposition tells us that to prove that a formation satisfies
Axiom I, it is enough to prove it on the cyclic layers of prime degree.

Lemma 4.6. Let (G,A) be a formation in which all inflation-restriction sequences

Ĥr(K/F ) Ĥr(L/F ) Ĥr(L/K)Inf Res

are exact for a certain positive integer r. Then in order to prove that a divisibility of the
form

|Ĥr(L/F )| | [L : F ]n

holds for all normal layers L/F , it is enough to show that it holds for all cyclic layers of
prime degree.
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Proof. See [AT68, Chapter XIV, Lemma 1].

Proposition 3.39 tells us that the inflation restriction sequence is exact for r = 1 for all
normal layers. We can see Axiom I as a divisibility of the form |Ĥr(L/F )| | [L : F ]n for
n = 0. We therefore have the following corollary.

Corollary 4.7. Axiom I is equivalent to the following statement:

Ĥ1(K/F ) = 0 for every cyclic layer of prime degree K/F .

4.2 The Brauer group and class formations

In the previous section we have defined field formations, which are formations that satisfy
Axiom I. We will need to impose one more condition on our formations before they will be
able to satisfy the main theorem of abstract class field theory. In this section, we define
the objects needed for this second requirement, and set up different ways to prove that a
formation satisfies Axiom II.

We know that when our formation is a field formation, Ĥ1(K/F ) = 0 for any normal
layer K/F . We thus see that the following is a direct corollary of Proposition 3.40, with
G = GL/F and H = GL/K , so that G/H = GK/F .

Proposition 4.8. Let {G, {GF };A} be a field formation, and let F ⊆ K ⊆ L with K/F
and L/F normal. Then the following sequence is exact.

0 Ĥ2(K/F ) Ĥ2(L/F ) Ĥ2(L/K).Inf ResF,K

When the sequence above is exact, that means that the inflation map Ĥ2(K/F ) →
Ĥ2(L/F ) is injective, and thus that Ĥ2(K/F ) can be identified with its image in Ĥ2(L/F )
by seeing the inflation map as inclusion. Taking another extension, so F ⊆ K ⊆ L ⊆M , by
transitivity of inflation we can also see Ĥ2(K/F ) embedded directly in Ĥ2(M/F ). Taking
the inverse limit gives the following construction.

Definition 4.9. We denote by Ĥ2(∗/F ) the group lim←−K Ĥ
2(K/F ), which we call the Brauer

group over F of the field formation {G, {GF };A}. It has the following properties:

1. For each normal layer K/F , the group Ĥ2(K/F ) is a subgroup of Ĥ2(∗/F );

2. If F ⊆ K ⊆ L then the subgroup Ĥ2(K/F ) is contained in Ĥ2(L/F ) and the inclusion
map is the inflation from K/F to L/F ;

3. Ĥ2(∗/F ) is the union of all the subgroups Ĥ2(K/F ) for normal layers K/F .

Proposition 4.10. Let F ⊆ E ⊆ K ⊆ L with K/F and L/F normal. Then the following
diagram is commutative

Ĥ2(K/F ) Ĥ2(L/F )

Ĥ2(K/E) Ĥ2(L/E)

Inf

Res Res

Inf
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For a further overview of how the inflation, restriction and corestriction maps work in
the case of the Brauer group, see [AT68, Chapter XIV].

Axiom II. For each field F , there is a given injective homomorphism invF : Ĥ2(∗/F ) →
Q/Z sending α 7→ invF α such that:

1. If K/F is a normal layer of degree n, then invF maps Ĥ2(K/F ) onto the subgroup
1
nZ/Z;

2. For any layer E/F (not necessarily normal) of degree n we have invE ResF,E = n·invF .

Definition 4.11. A field formation that also satisfies Axiom II is called a class formation.

Definition 4.12. Let K/F be a normal layer of a class formation {G, {GF };A}. Then
Axiom II tells us that Ĥ2(K/F ) is mapped onto 1

nZ/Z. We call the element α ∈ Ĥ2(K/F )
that is mapped to 1

n the fundamental class, and since invF is an isomorphism, this also

means that the fundamental class is the canonical generator of Ĥ2(K/F ).

As the requirements of Axiom II might come a little out of the blue, we will try to give
a little preview of why this is a reasonable thing to ask. In the next section, we will prove
that for any class formation and every normal layer K/F , there exists an isomorphism from
Ĥq(GK/F ,Z) to Ĥq+2(GK/F , AK). One of the steps in proving this is showing that there

is a bijective map from Ĥ0(GK/F ,Z) to Ĥ2(GK/F , AK). Whenever a formation satisfies

Axiom II, we know that Ĥ2(K/F ) is isomorphic through the invF map with 1
nZ/Z. We will

see that Ĥ0(GK/F ,Z) is also a cyclic group of degree n, which will then lead to a bijective

map. Moreover, the invF map will tell us more about which elements of Ĥ0(GK/F ,Z) are

sent to a certain element of Ĥ2(GK/F , AK) by this isomorphism, which will be very impor-
tant when setting up the algorithm in Chapter 5.

In practice, it turns out that Axiom II can be quite hard to prove. We therefore propose
three different statements that are easier to prove and together imply both Axiom I and
Axiom II. The first two statements are known as the first and second inequality, and the
third is a weaker form of Axiom II. Historically, the first statement was h2(K/F ) ≥ [K : F ],
from which the name “inequality” follows.

Definition 4.13 (First Inequality). Let {G, {GF };A} be a field formation. We denote by
hr the order of the cohomology group Ĥr. Then we say that a field formation satisfies the
first inequality if for all normal layers we have:

h2(K/F ) = [K : F ] · h1(K/F ).

Definition 4.14 (Second Inequality). Let {G, {GF };A} be a field formation. Then we say
that a field formation satisfies the second inequality if for all normal layers K/F we have

h2(K/F ) ≤ [K : F ].

By Lemma 4.6 we again see that it suffices to prove these equalities for all normal layers
of prime degree. When looking at global fields, we will prove that h2(K/F ) | [K : F ] which
leads to the same conclusion.

We see that proving both the first and the second inequality gives that h1(K/F ) ≤ 1
and since hr(K/F ) is a positive integer, we see that h1(K/F ) = 1. On the other hand, it
turns out that the second inequality together with the axiom below implies Axiom II.
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Axiom II’. For each field F , there exists a subgroup H
2
(∗/F ) of the Brauer group Ĥ2(∗/F )

and an injective homomorphism invF of this subgroup to Q/Z such that:

1. For any layer E/F we have that ResF,E H
2
(∗/F ) ⊆ H2

(∗/E) and

invE ResF,E (α) = [E : F ] invF (α)

for all α ∈ H2
(∗/F );

2. If there exists a layer E/F of degree n then H
2
(∗/F ) contains a subgroup which is

cyclic of order n.

Theorem 4.15. Let {G, {GF };A} be a field formation. If this field formation satisfies the
second inequality and Axiom II’, then it satisfies Axiom II.

Proof. Let K/F be a normal layer of the field formation of degree n. Then we want to

show that Ĥ2(K/F ) is contained in H
2
(∗/F ) and moreover that invF maps Ĥ2(K/F ) onto

1
nZ/Z. We know from Axiom II’ that there exists a subgroup T of H

2
(∗/F ) which is cyclic

of degree n. From Axiom II’.1 we then see that

invK ResK,F T = n invF T = invF n · T = invF id = 0

where n ·T = id since T is cyclic of degree n. Since invF is an isomorphism that means that
ResK,F T = id. By the higher degree inflation-restriction sequence of Proposition 3.40

0 −→ Ĥ2(K/F )
InfK,∗−−−−→ Ĥ2(∗/F )

ResF,K−−−−−→ Ĥ2(∗/K)

we see that ResK,F T = id implies that T ⊆ Ĥ2(K/F ). On the other hand, by the second

inequality we have that the order of Ĥ2(K/F ) is less than or equal to n, and since the order
of T is n, we see that Ĥ2(K/F ) = T . We may now conclude that for every normal layer

we have Ĥ2(K/F ) ⊆ H
2
(∗/F ). Since invF is an isomorphism and T is a cyclic group of

degree n, we see that invF must map T to 1
nZ/Z, since that is the only cyclic subgroup of

degree n of Q/Z. This concludes our proof.

4.3 Abstract class field theory

We will now work towards defining Theorem 4.17, which is the main theorem of abstract
class field theory. Applying this theorem to the global class formation will lead to the main
tool in our algorithm. Whenever we give only a proof sketch, the full proof is available in
[AT68, Chapter XIV].

Let K/F be a normal layer in a class formation, with Galois group of order n. We then
have the following cup product:

Ĥ2(GK/F , AK)× Ĥq(GK/F ,Z)→ Ĥq+2(GK/F , AK ⊗ Z).

Fixing the first part of the cup product to be the fundamental class of the layer, denoted
by α, we get for each integer q a map Ĥq(GK/F ,Z)→ Ĥq+2(GK/F , AK ⊗ Z).

Note that the natural pairing AK × Z → AK , (a, x) 7→ ax where x = x mod n is G-
bilinear. By the universal property of the tensor product it thus corresponds to a G-linear
module homomorphism AK ⊗ Z→ AK .
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Definition 4.16. The map that we get by applying Proposition 3.47 to the pairing described
above is

αq : Ĥq(GK/F ,Z)→ Ĥq+2(GK/F , AK), ζ 7→ α ∪ ζ

for any variable element ζ ∈ Ĥq(GK/F ,Z).

We will now state the main theorem of abstract class field theory.

Theorem 4.17 (Main theorem of abstract class field theory). Let K/F be a normal layer
in a class formation. Then the maps αq defined above are isomorphisms for all q ∈ Z:

αq : Ĥq(GK/F ,Z)
∼−→ Ĥq+2(GK/F , AK) = Ĥq+2(K/F ).

Before we can prove this theorem, we need the following proposition.

Proposition 4.18. Let G be a finite group, and A×B → C be a G-pairing of G-modules.
Let α ∈ Ĥp(G,A). Then for each q ∈ Z and each subgroup S ⊆ G, the cup product with the
restriction of α to S gives a homomorphism

αq,S : Ĥq(S,B)→ Ĥp+q(S,C).

Suppose that for some integer q0 the map αq0−1,S is surjective, αq0,S is bijective and αq0+1,S

injective for every subgroup S of G. Then the maps αq,S are bijective for all q ∈ Z and
S ⊆ G.

Proof sketch. Using a technique called dimension shifting (see [Bro12, Chapter III.7]) we
can reduce the proof to the case p = 0. One can create an exact sequence

0→ B → C ′ → D

where C ′ = C ⊗C such that B injects into C ′, and D is an induced module that makes the
sequence exact. Then taking cohomology gives

... Ĥq0−1(S,B) Ĥq0−1(S,C) Ĥq0−1(S,D) Ĥq0(S,B)

Ĥq0(S,C) Ĥq0(S,D) Ĥq0+1(S,B) Ĥq0+1(S,C) ...

Now, since αq0−1,S is surjective, αq0,S is bijective and αq0+1,S injective, we see that both

Ĥq0−1(S,D) and Ĥq0(S,D) are zero. By a generalized version of Proposition 3.28 this
means that Ĥn(S,D) = 0 for all n ∈ Z and S ⊆ G. Therefore, we see that the maps αq,S
are bijective for all q and all S.

Proof of Theorem 4.17. We know from Proposition 4.4 that every open subgroup S of GK/F
is of the form GK/F ′ for some F ⊆ F ′ ⊆ K. Moreover, if the fundamental class of K/F is
denoted by α, then the fundamental class of K/F ′ is α′ := ResF,F ′ α. We denote by α′q the
map

Ĥq(GK/F ′ ,Z)→ Ĥq+2(GK/F ′ , AK), ζ 7→ α′ ∪ ζ.

Using the Proposition 4.18, we see that proving that α′q0−1 is surjective, α′q0 is bijective
and α′q0+1 injective gives the desired result.
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Since {G, {GF };A} is a class formation, we see by Axiom I that Ĥ1(K/F ) = 0 for
all normal layers K/F . Therefore we can conclude that α′q0−1 is surjective, since it maps

Ĥ−1(GK/F ′ ,Z)→ Ĥ1(K/F ). Also, since Z is a trivial G-module, Proposition 3.19 tells us

that Ĥ1(GK/F ′ ,Z) = 0. Therefore α′q0+1 is injective by definition.

Showing that α′q0 : Ĥ0(GK/F ′ ,Z) → Ĥ2(GK/F ′ , AK) is bijective is where Axiom II is

needed. Axiom II demands that for every normal layer, the group Ĥ2(K/F ′) is cyclic of

degree n′ and has generator α′. Moreover, we have that Ĥ0(GK/F ′ ,Z) = ZG

NG(Z) = Z/n′Z
by Definition 3.25. By definition of the map α′0 we see that the generator of Ĥ0(GK/F ′ ,Z),

is sent to α′, which is the generator of Ĥ2(K/F ′). We can thus use the above proposition
to conclude that

αq : Ĥq(GK/F ,Z) ∼= Ĥq+2(GK/F , AK) = Ĥq+2(K/F )

is indeed an isomorphism for all q ∈ Z.

We will now look at a particularly interesting case of this theorem, namely the case
where q = −2. We will see that in that case, the main theorem induces for each normal
layer K/F a surjective homomorphism from the G-module AF to the Galois group GK/F .
We quickly recall the definition of the norm map, which we will need to describe the kernel
of this homomorphism.

Definition 4.19. Let K/F be a layer in a formation, and let GK/F = GF /GK be the
corresponding group. Then we define the norm map to be

NK/F : K → F, x 7→
∏

g∈GK/F

g(x),

and we call the index (F : NK/FK) the norm index.

For q = −2, Theorem 4.17 gives a map from Ĥ−2(GK/F ,Z) to Ĥ0(K/F ). By definition
of Tate cohomology groups, we know that

Ĥ0(K/F ) ∼= AF /NK/FAK .

For Ĥ−2(GK/F ,Z), we have the following isomorphism.

Theorem 4.20. Let K/F be a normal layer in the class formation with abelian group G.
Then we have

Ĥ−2(GK/F ,Z) ∼= GK/F .

In order to prove this, one needs to combine the following two lemmas.

Lemma 4.21. For an abelian group G, we have that Ĥ−2(G,Z) ∼= IG
I2G
.

Proof. We know that the augmentation map ε : Z[G]→ Z has kernel IG = 〈σ − 1 | σ ∈ G〉
and is surjective. We therefore have the exact sequence

0→ IG → Z[G]→ Z→ 0.
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Since Z[G] is itself a free Z[G]-module, we know by Proposition 3.27 that it has trivial
cohomology. Taking cohomology then gives

... 0 Ĥr(G,Z) Ĥr+1(G, IG) 0 ...δ

We thus see that δ gives an isomorphism Ĥr(G,Z) ∼= Ĥr+1(G, IG). Taking r = −2 then
gives us an isomorphism Ĥ−2(G,Z) ∼= Ĥ−1(G, IG).

On the other hand, we have by definition of Tate cohomology that Ĥ−1(G,A) = Ĥ0(G,A) =

ker(N∗G) = ker(NG)
IG·A where NG is the map from A→ A, sending a 7→

∑
g∈G

ga. Taking A = IG

we see that all of IG is mapped to the kernel by NG, which gives us ker(N∗G) = IG
I2G

.

We thus have that Ĥ−2(G,Z) ∼= Ĥ−1(G, IG) ∼= IG
I2G

which finishes the proof.

Lemma 4.22. Let G be an abelian group. Then G ∼= IG
I2G
.

Proof. We claim that the following map is an isomorphism:

G→ IG/I
2
G, σ 7→ (σ − 1) · I2

G.

We know that IG is generated by 〈σ − 1 | σ ∈ G〉 as a Z-module. From the identity
(s−1)(t−1) = (st−1)− (s−1)− (t−1) we see that IG/I

2
G
∼= {σ−1 | σ ∈ G} and therefore

the proposed map is the desired isomorphism.

Combining Theorem 4.17 and 4.20 with the definition of Tate cohomology groups gives
us the following result. This will be the main result that we use in the next chapter.

Theorem 4.23. Let K/F be a normal layer in a class formation with abelian group G.
The map α−2 gives an isomorphism

ωK/F : AF /NK/FAK ∼= Ĥ0(K/F ) ∼= Ĥ−2(GK/F ,Z) ∼= GK/F .

Definition 4.24. We call the isomorphism ωK/F : AF /NK/FAK ∼= GK/F the reciprocity
law isomorphism. One can also see the above isomorphism as a homomorphism from AF to
GK/F with kernel NK/FAK . This homomorphism is called the norm-residue map and the
image of a ∈ AF is denoted by (a,K/F ).

Definition 4.25. Let K/F be a normal layer and let a be an element of AF . Then we
denote by a the corresponding element in Ĥ0(K/F ) = AF /NK/FAK .

We see that an element a ∈ AF is sent to σ ∈ GK/F if and only if a = α∪ ζσ, where α is

the fundamental class of the layer K/F and ζσ is the class in Ĥ−2(GK/F ,Z) that corresponds
to σ ∈ GK/F . The following theorem tells us a bit more about where the norm-residue map
maps each element. It shows that knowledge of the invF map is very important when using
the norm-residue map.

Theorem 4.26. Let a ∈ AF and σ ∈ GK/F . Denote by a the class of a in Ĥ0(K/F ) and

let ∪ δχ be the map sending Ĥp(G,A)→ Ĥp+2(G,A) as defined in Theorem 3.49. Then a
is sent to σ by the norm-residue map if and only if

invF (a ∪ δχ) = χ(σ)

for all characters χ ∈ Ĥ1(G,Q/Z).
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Proof. See [AT68, Chapter XIV, Proposition 6].

Definition 4.27. For any extension K/F (not necessarily abelian), we call a subgroup of
AF of the form NK/FAK a norm subgroup of AF .

The following lemma explains why there is no loss of generality when only considering
abelian extensions in what follows.

Lemma 4.28. The norm group of an arbitrary extension E/F (not necessarily abelian) is
the same as that of its maximal abelian subextension M/F , so we have that

NE/FAE = NM/FAM .

Proof. See [AT68, Chapter XIV, Theorem 7].

The following statements will tell us how towers of normal field extensions behave under
the reciprocity law.

Proposition 4.29. Let F ⊆ E ⊆ K be normal extensions and let a ∈ AF . Then we have

a ∈ NE/FAE ⇐⇒ (a,K/F ) ∈ GK/E .

Proof. If a ∈ NE/FAE , that means that there exists b ∈ AE such that a = NE/F b. We have
the following commutative diagram:

AF AE

GK/F GK/E

(a,K/F )

NE/F

(a,K/E)

inclusion

From this we see that (a,K/F ) = (b,K/E) and (b,K/E) ∈ GK/E so (a,K/F ) ∈ GK/E .
To show the reverse implication, we note that AE is mapped to GK/E surjectively, so

there must be a b ∈ AE such that if (a,K/E) ∈ GK/E then (a,K/F ) = (b,K/E). Using the
fact that the kernel of the norm-residue map AF → GK/F is NK/FAK , we see that there
must exist c ∈ AK such that a = NE/F b · NK/F c = NE/F (b · NK/Ec), which proves the
proposition.

In the next chapter, we will create function fields with many rational places by look-
ing at finite abelian extensions. Those extensions will present themselves as intermediate
extensions K ⊆ M ⊆ Kab. The following theorem gives us more information about those
intermediate fields. It tells us that they are well-behaved when looking at inclusions of
subfields and the composita. These properties will make it possible to apply abstract class
field theory to find fields with many rational places.

Theorem 4.30. Let {G, {GF };A} be a class formation, and let {Mi} be the set of all
abelian extensions of a field F . Then there is a one-to-one correspondence between the set
{Mi} and the set of all norm subgroups of AF such that:

1. M1 ⊆M2 ⇐⇒ NM1/FAM1
⊇ NM2/FAM2

;

2. NM1M2/FAM1M2
= (NM1/FAM1

) ∪ (NM2/FAM2
);
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3. [M : F ] = (AF : NM/FAM ) for any M ∈ {Mi}.

Proof. We know that the homomorphism AF → GM/F , a 7→ (a,M/F ) is surjective. There-
fore, the subgroups of GM/F are in one-to-one correspondence with their preimages in AF .
Moreover, since the kernel of the norm-residue map is NM/FAM , we see that these preim-
ages are subgroups of AF containing NM/FAM . Proposition 4.29 shows that the inverse
image of GM/F is exactly NM/FAM .

Assume now that there exist two abelian extensions M1,M2 such that F ⊆M1,M2,⊆ K
and such that NM1/FAM1 = NM2/FAM2 . Then by Proposition 4.29 we see that their images
under the norm-residue map (a,K/F ) would be the same. We thus have that GK/M1

=

GK/M2
and therefore that M1 = KGK/M1 = KGK/M2 = M2 which concludes the proof of the

first statement. The three properties all follow from the one-to-one correspondence.

In the next two sections, we will investigate local and global class field theory. Global
class field theory is what we will need to find function fields with many rational places. The
reason why we also cover local class field theory lies in the set up of the local and global
formation.

Definition 4.31. Let k be a local field, let Ω be its algebraic closure. Denote by G the
Galois group of Ω/k. We will call the formation {G, {GF },Ω∗}, where {GF } is the set of
all closed subgroups of G (see Theorem 1.59), the local formation.

Definition 4.32. Let F be a global field, and let G be the Galois group of F ab/F , and
denote by CF the idèle class group of F . We will call the formation {G, {GK};CK}, where
{GK} is the set of all closed subgroups of G, the global formation.

Since an idèle is an element of the infinite product of local fields, we will cover local class
field theory first.

4.4 Local class field theory

The goal of this section is to show that the local formation defined in Definition 4.31 is
indeed a class formation. We will first show that it is a field formation, meaning that it
satisfies Axiom I (see Corollary 4.34). We will then work towards a statement that gives a
relation between the ramification degrees of towers of local field extensions. Using this, we
then prove the second inequality for local formations in Proposition 4.45. Lastly, we will
show that the local formation satisfies Axiom II’ in Theorem 4.46, so that we can conclude
that the local formation is indeed a class formation.

First, we fix some notation. Let k be a local field, meaning that it is complete under
a discrete valuation and has finite residue field. Denote by p the unique maximal ideal
of k and by Ok the ring of integers of k. We recall that the local formation is the set
{G, {GK},Ω∗}, where {GK} is the set of closed subgroups of G. By the main theorem of
infinite Galois theory (Theorem 1.59) we see that for a finite Galois extension K/k, the
submodule corresponding to GK is just K∗. For an extension K/k we denote by q the
maximal ideal of K and by OK the ring of integers of K.

We start by showing that the local formation is a field formation, which is a direct
corollary of Hilbert’s 90th theorem.
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Theorem 4.33 (Hilbert 90). Let F,K be fields and let K/F be a finite Galois extension
with Galois group G. Then

Ĥ1(G,K∗) = 0.

Corollary 4.34. The local formation satisfies Axiom I.

Proof. LetK/F be a normal layer in the formation. Proving that the local formation satisfies
Axiom I means showing that Ĥ1(K/F ) = 0. But we have that Ĥ1(K/F ) = Ĥ1(GK/F ,K

∗)
which is zero by Hilbert 90.

In Chapter 2, we constructed function fields with many rational places by looking at
intermediate extensions of a function field K and its maximal abelian unramified extension
in which one rational place splits completely. In Chapter 5, we will do something similar,
but we will then look at intermediate extensions of K and the maximal abelian extension
that is ramified only at certain places and in which one rational place splits completely.
Controlling this ramification behaviour is then an important step of the construction. The
reason why we treat this material now, instead of after proving that the local formation is a
class formation, is that once we have established this result, it is easier to prove the second
inequality than doing that from scratch. We start with the following definitions.

Definition 4.35. We define

Vi = {σ ∈ G | σα ≡ α mod qi+1 for all α ∈ OK}

to be the i-th ramification group of K/k. Note that we have G = V−1 ⊇ V0 ⊇ V1 ⊇ ... .

In accordance with Definition 1.52, V0 is the inertia group, and its fixed field T is again
the maximal unramified subfield of K.

Definition 4.36. We define

U
(i)
k = {x ∈ Uk | x ≡ 1 mod pi}.

Here U
(0)
k is the group of units and U

(−1)
k = k∗. Note that k∗ = U

(−1)
k ⊇ U (0)

k ⊇ U (1)
k ⊇ ...

Let K/k be a field extension of local fields with Galois group G, let H be a subgroup of
G and let E be the fixed field of K under H, so k ⊆ E ⊆ K. We denote the ramification
groups of E/k by V i and those of K/E by Ṽi. We have a simple result for the groups Ṽi.

Lemma 4.37. Let K/k be a normal extension with Galois group G, and E an intermediate

extension which is the field fixed under H. Then Ṽi = Vi ∩H.

Unfortunately, for the ramification groups V i of E/k the result is less straightforward.
It turns out that the ramification groups of E/k are in fact the groups ViH/H, but that
we do not have that V i = ViH/H. We will now set up some theory that will help us
understand this correspondence. We are looking for a function that will tell us for each
subfield k ⊆ E ⊆ K, which group Vi of K/k corresponds to which ramification group
V j = ViH/H of E/k. Denote by i(σ) the highest index of a ramification group containing
σ, meaning that σ ∈ Vi(σ) but σ 6∈ Vi(σ)+1. We then see that for subextensions k ⊆ E ⊆ K
we have the following.
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Lemma 4.38. Let E/k be a normal extension, where E is the fixed field of K under H. If
σH ∩ Vi is non-empty for some i ≥ 0, then

i(σ) + 1 =

l(σ)∑
j=0

1

(Ṽ0 : Ṽj)

where l(σ) is the largest integer j such that σH ∩ Vj is non-empty.

Proof. See [AT68, Chapter XI, Lemma 2].

This lemma motivates the following definition.

Definition 4.39. Let K/k be a normal extension. We define for x ≥ 0 the function ϕK/k
such that

ϕK/k =

∫ x

0

1

(V0 : Vt)
dt

where Vx = Vdxe whenever x is not an integer. Moreover, we extend ϕ to all of R by setting
(V0 : Vx) = (Vx : V0)−1 for x ≤ 0.

The function ϕ(x) and its inverse ψ(x) are graphed below (see [AT68, Chapter XI]).

Proposition 4.40. Let K/k be a normal extension and ϕ = ϕK/k as defined above. Then

1. ϕ(x) is continuous, strictly monotone increasing, convex and satisfies ϕ(0) = 0;

2. ϕ(x) has left and right derivatives everywhere, denoted by ϕ′l and ϕ′r. At any integer
we have ϕ′l = 1

(V0:Vi)
and ϕ′r = 1

(V0:Vi+1) ; otherwise ϕ′l(x) = ϕ′r(x) = 1
(V0:Vx) ;

3. ϕ′(−∞) = f and ϕ′(+∞) = 1/e;

4. ϕ(x) has a well-defined inverse (because of the previous statements), which we denote
by ψ(x);

5. ψ(x) is continuous, strictly monotone increasing, convex and satisfies ψ(0) = 0;
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6. ψ(x) has left and right derivatives everywhere, denoted by ψ′l and ψ′r, which are both
integers for any x > −1;

7. ψ′(−∞) = 1/f and ψ′(+∞) = e.

Theorem 4.41 (Hasse-Arf). Let K/k be a normal extension. If Vi 6= Vi+1, then ϕ(i) is an
integer. Moreover, if Vi = Vi+1 then ϕ(i) is not an integer.

We can now state which ramification group of K/k corresponds to which ramification
group of E/k, through the following theorem.

Theorem 4.42. Let k ⊆ E ⊆ K with K/k, E/k both normal, and E fixed under H. Then
the ramification groups of K/k and E/k are related as follows. Let V i be a ramification
group of E/k, then this group is equal to VϕK/E(i)H/H, where VϕK/E(i) is the ϕK/E(i)-th
ramification group of K/k.

Proof. See [AT68, Chapter XI, Theorem 6].

Once we have established that the local formation is indeed a class formation, the fol-
lowing theorem will tell us how the ramification groups behave in the field extensions.

Theorem 4.43. Let k be a local field, and let K/k be a finite abelian extension. Then

U
(i)
k ⊆ NK/kK if and only if Vψ(i) = 1.

Proof. See [AT68, Chapter XI, Theorem 11].

We will now work towards proving the second inequality for the local formation.

Theorem 4.44. Let K/F be a normal extension. For any integer i ≥ −1 we have

1. NK/FU
(ψ(i))
K ⊆ U (i)

F and NK/FU
(ψ(i)+1)
K ⊆ U (i+1)

F ;

2. (U
(i)
F : U

(i+1)
F NK/FU

(ψ(i))
K ) ≤ ψ′r(i)

ψ′l(i)
;

3. There is an integer s such that U
(s)
F ⊆ NK/FK.

Proof. See [AT68, Chapter XI, Theorem 9].

Proposition 4.45. The second inequality holds for the local formation.

Proof. From Theorem 4.44.3 we see that we may write the norm index of a normal layer
K/F as a finite product

(F : NK/FK) =

s∏
i=−1

(U
(i)
F NK/FK : U

(i+1)
F NK/FK). (5)

Moreover, after some calculations we get that

(U
(i)
F NK/FK : U

(i+1)
F NK/FK) · (U (i)

F ∩NK/FK : U
(i+1)
F NK/FU

(ψ(i))
K ∩NK/FK)

= (U
(i)
F : U

(i+1)
F NK/FU

(ψ(i))
K ).

(6)
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Combining (5) and (6) with Theorem 4.44.2 gives:

(F : NK/FK) ≤
s∏

i=−1

ψ′r(i)

ψ′l(i)
=

1

ψ′l(−1)
·
s∏
i=0

ψ′r(i− 1)

ψ′l(i)
· ψ′r(+∞) ≤ 1

1/f
· e = e · f = n

since ψ′r(i − 1) ≤ ψ′l(i) (see the graph of ψ(x)). Note that for a cyclic extension K/F we

have that Ĥ2(K/F ) ∼= Ĥ0(K/F ) = F/NK/FK and thus that h2(K/F ) = (F : NK/FK).
From this it follows that we have h2(K/F ) ≤ [K : F ] for all cyclic layers of prime degree,
and therefore we can say that the second inequality holds.

The last thing we need to show in order to prove that the local formation is a class
formation, is that Axiom II’ holds. We will now construct a map that can be extended to
the invariant map needed for Axiom II’.

Let K/F be a finite extension of local fields and let UK be the set of all elements of K
that have valuation 0. We then have an exact sequence

0→ UK → K∗ → Z→ 0

where the latter map is the valuation map corresponding to the local field K. We claim
that in this formation Ĥr(GK/F , UK) = 0 for all r ∈ Z (this follows from the fact that the
Herbrand quotient h2/1(UK) = 1, see [AT68, Chapter 4]) so taking cohomology gives an

isomorphism v : Ĥr(GK/F ,K
∗) ∼= Ĥr(GK/F ,Z). On the other hand, we have the exact

sequence
0→ Z→ Q→ Q/Z→ 0.

Here we claim that Ĥr(GK/F ,Q) = 0 since GK/F is cyclic of finite degree n and multiplying

by any integer is an automorphism of Q. As Ĥr(G,M) is torsion whenever G is a finite
group, we see that Ĥr(GK/F ,Q) can only consist of the identity automorphism of Q. Taking
cohomology then tells us that the connecting map gives an isomorphism

δ : Ĥr−1(GK/F ,Q/Z) ∼= Ĥr(GK/F ,Z).

Combining the two isomorphisms v and δ for r = 2 then gives

Ĥ2(GK/F ,K
∗) ∼= Ĥ2(GK/F ,Z) ∼= Ĥ1(GK/F ,Q/Z).

Now since Q/Z is a trivialG-module, we have by Proposition 3.19 that Ĥ1(GK/F ,Q/Z) ∼=
Hom(GK/F ,Q/Z). Since GK/F is cyclic (see Corollary 1.89), we see that this is isomorphic

to 1
|GK/F |

Z/Z. Combining all the above we thus see that

Ĥ2(GK/F ,K
∗) ∼=

1

|GK/F |
Z/Z. (7)

Theorem 4.46. The map defined in (7) can be extended to a map Ĥ2(Gunrk , k∗unr)→ Q/Z
that satisfies the conditions of Axiom II’. From this it follows that the local formation is
indeed a class formation.

Proof. Let K/F be the extension described above and let L/K be another unramified ex-
tension. Let H = Gal(L/F ) ⊇ Gal(K/F ). Then the following diagram is commutative:
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Ĥ2(H,L∗) 1
|H|Z/Z

Ĥ2(G,K∗) 1
|G|Z/Z

invL/F

invK/F

Inf

From this we see that the individual maps of the form (7) all fit in a larger invariant
map

invk : Ĥ2(Gunrk , k∗unr)→ Q/Z. (8)

This map is surjective, and therefore an isomorphism, since for every integer n there exists
an unramified extension of k of degree n.

We will now show that this map satisfies the conditions of Axiom II’. First of all, we see
that the second condition is satisfied by definition of the map, since for every layer of degree
n there is a subgroup of Ĥ2(Gunrk , k∗unr) that will be mapped onto 1

nZ/Z, so this subgroup
is cyclic of order n.

Let L/K be an unramified layer of the local formation. Recall that for an element a ∈ K∗
we denote by a the corresponding element in Ĥ0(L/K) = K∗/NL/KL

∗ (see Definition 4.25).
Theorem 3.49 tells us that if we denote by χ the character of G such that χ(ϕ) = 1/n,
then any element c of Ĥ2(GL/K , L

∗) can be written as a ∪ δχ with a ∈ Ĥ0(GL/K , L
∗) =

K∗/NL/KL
∗ by definition of Tate cohomology groups. For such an element a ∪ δχ we see

that
invL/K(a ∪ δχ) = χvL(a)(ϕ) = χ(ϕvL(a)) = χ(ϕvK(a)) (9)

where vL(a) = vK(a) since L/K is unramified.
Let us now look at any layer E/F (not necessarily unramified) in the formation. Note

that we have that vE(a) = e · vF (a) for any a ∈ F , where e is the ramification index.
Moreover, if K/F is an unramified extension, then there exists a map from GKE/E → GK/F ,

sending ϕKE/E to ϕfK/F , where f is the residue class degree. Now, (9) tells us that

invE ResF,E c = χ((ϕKE/E)vE(ResF,E(a)))

= χ((ϕfK/F )e·vF (a))

= χ((ϕK/F )e·f ·vF (a))

= [E : F ] · χ((ϕK/F )vF (a))

= [E : F ] · inv c

for all c ∈ H2
(∗/F ), which is exactly the second condition of Axiom II’.

Definition 4.47. The invariant map defined above, sending Ĥ2(∗/K)→ Q/Z is called the
local invariant map, and denoted by invK or invp, when p is the unique maximal ideal of
the local field K.

Now that we have proved that the local formation is indeed a class formation, we can
apply the main theorem of class field theory on it. This gives us the following result.

Theorem 4.48. Let k be a local field, and let K/k be a finite abelian extension. Let ϕ be
the generator of Gal(K/k). Then the local norm-residue map

θK/k : k∗ → Gal(K/k), a 7→ (a,K/k)

is surjective with kernel NK/kK
∗ and has the following properties:



68 4 CLASS FIELD THEORY

1. If K/k is an unramified extension, then (a,K/k) = ϕvk(a) for all a ∈ k∗;

2. θK/k maps the i-th unit group U
(i)
k onto the ramification group Vψ(i)(K/k) for all

integers i ≥ 0.

Proof. Surjectivity and the fact that the kernel is NK/kK
∗ follows from Theorem 4.23.

1. This follows almost immediately from Theorem 4.26. We have that a ∈ k∗ is sent to
σ ∈ GK/k if and only if

invk(a ∪ δχ) = χ(σ)

for all χ ∈ Hom(GK/k,Q/Z). We know that for an unramified extension K/k, we have that

invk(a ∪ δχ) = invK/k(a ∪ δχ) = χ(ϕvk(a))

and therefore that θK/k sends a ∈ k∗ to ϕvk(a) ∈ GK/k.

2. Theorem 4.43 tells us that U
(i)
k ⊆ NK/kK = ker(θK/k) if and only if Vψ(i) = 1.

Denote by Ω again the maximal abelian extension of k, and by θΩ/k the norm-residue map
into Gal(Ω/k). Then we have that

K is left fixed by Vψ(i)(Ω/k) ⇐⇒
Vψ(i)(K/k) = 1 ⇐⇒

U
(i)
k ⊆ NK/kK ⇐⇒

θΩ/k(U
(i)
k ) leaves K fixed.

From this we see that θΩ/k(U
(i)
k ) lies dense in Vψ(i)(Ω/k). Since the multiplicative groups

of units U
(i)
k are compact, it follows that θK/k(U

(i)
k ) = Vψ(i)(K/k) (see [Ser13, Chapter

XV.2]).

4.5 Global class field theory

The goal of this section is to prove that the global formation (Definition 4.32) is indeed
a class formation, and to see how the isomorphism from Theorem 4.17 works in the case
of global fields. To prove that the global formation is a class formation, we will start by
proving the first and second inequality for this formation, from which Axiom I follows. We
will then spend most of our time on proving that Axiom II holds for the global formation,
since this is where we gain most intuition on the global norm-residue map. We start by
illustrating what the cohomology groups of the global formation look like. Recall that

CK = JK/K
∗, JK = {(aq)q ∈

∏
q∈PK

K∗q | vq(aq) = 0 for all but finitely many q ∈ PK}.

The Galois group GK/F acts on
∏
q|p
K∗q by permuting the factors. Let σ ∈ GK/F . Then

we see that σ acts on the local field Kq by sending Kq to Kσ(q), x 7→ σ(x). Since Kq is a
local field, knowing how a group acts on its maximal ideal is enough to know how it acts on
the entire field. [CF10, Section VII.1] tells us that

σ : (aq)q 7→ (σ(aσ−1(q)))q.
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Proposition 4.49. Let K/F be a normal extension and let G = GK/F be the Galois group.
Let p be a place of F and q a place of K lying above p, and denote by Gq the decomposition
group GZ(q|p). Denote by UKq

group of units of Kq. Then we have isomorphisms

Ĥr(GK/F ,
∏
q|p

K∗q ) ∼= Ĥr(Gq,K
∗
q ), Ĥr(GK/F ,

∏
q|p

U∗Kq
) ∼= Ĥr(Gq, U

∗
Kq

).

Proof. We use Shapiro’s lemma (Lemma 3.33) to prove this. Recall that the Galois group
of Kq/Fp is the decomposition group Gq = GZ(q|p) = {σ ∈ GK/F | σ(q) = q}. Now, we
see that

MG
Gq

(K∗q ) = HomGq
(Z[G],Kq) ∼=

∏
q|p

K∗q ,

where the latter isomorphism follows from the fact that G = GK/F acts transitively on the

places above p. Now Shapiro’s lemma tells us that Ĥi(G,MG
Gq

(A)) ∼= Ĥi(Gq, A), so we see
that

Ĥi(G,
∏
q|p

K∗q ) ∼= Ĥi(G,MG
Gq

(A)) ∼= Ĥi(Gq,K
∗
q ).

The second isomorphism follows analogously.

From now on, we fix the following notation. Let K/F be a normal layer of the global
formation. Recall that for a ∈ JF we denote by a its class in Ĥ0(GK/F , JK) = JF /NK/FJK
by Definition 4.25. We will denote the local components of a ∈ JF by ap ∈ F ∗p and denote

by ap its class in Ĥ0(GKp/Fp
,K∗p) = F ∗p /NK/FK

∗
p .

For a class c ∈ Ĥ2(GK/F , JK) we denote by c its class in Ĥ2(GK/F , CK). We denote by

cp the local class in Ĥ2(GKp/Fp
,K∗p). We say that a ∈ JF corresponds to c ∈ Ĥ2(GK/F , JK)

if c = a ∪ δχ.

Definition 4.50. Let {G, {GF };A} be a formation and denote by hi(G,A) the order of

Ĥi(G,A). We define the Herbrand quotient h2/1(G,A) to be the quotient h2(G,A)
h1(G,A) .

We will now state three properties of the index h2/1 that will be needed to prove the
first inequality.

Proposition 4.51. Let {G, {GF };A} be formation and denote by h2/1(A) the Herbrand
quotient of (G,A).

1. The index h2/1 is multiplicative, meaning that if A is an abelian group and A0 is a
subgroup invariant under G we have that

h2/1(A) = h2/1(A/A0) · h2/1(A0);

2. If A0 is a finite group, then h2/1(A0) = 0;

3. If A ∼= Z and G operates trivially on A, then h2/1(A) = n, where n is the order of G.

Proof. See [AT68, Chapter 3].

When proving the first inequality for global fields, we will use the following definitions.
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Definition 4.52. Let F be a function field and let K/F be an abelian extension of degree
n. Let

U =
∏

q∈PK

UKq
, J0 = {(xq)q ∈ JK |

∏
vq(xq) = 1},

which we respectively call the unit idèles of K and the idèles of absolute value 1 of K. Note
that U ⊆ J0 and K∗ ⊆ J0 and therefore UK∗ ⊆ J0.

Theorem 4.53 (First Inequality for global fields). Let F be a global field and let K/F be
a cyclic extension of degree n with Galois group G. Then

h2/1(CK) = n.

Proof sketch. It turns out that the proof of the first inequality is a lot easier in function
fields than in general global fields, so we will prove it for function fields only. We follow
Chapter V of [AT68]. Using the definitions above, we see that σ ∈ G sends any element of
U to another element of U and any element of J0 to another element of J0. From this we
see that both J0/K

∗ ⊆ J/K∗ and UK∗/K∗ ⊆ J0/K
∗ are subgroups invariant under G. By

multiplicativity of h2/1 we thus have

h2/1(CK) = h2/1(JK/K
∗) = h2/1(JK/J0) · h2/1(J0/UK

∗) · h2/1(UK∗/K∗).

We see that J0 is the kernel of the degree map: JK → Z, (aq)q 7→
∑
vq(aq), from which

it follows that JK/J0 is isomorphic to Z. Therefore we have that h2/1(JK/J0) = n by
Proposition 4.51.3 .

On the other hand, we can construct a map from the idèle class group to the divisor
class group, by sending an idèle (aq)q 7→

∑
vq(aq)q. Since the elements of the local fields

Kq can be written as u · qn we see that the kernel of this map is exactly UK∗. From this
it follows that J0/UK

∗ is isomorphic to the degree 0 divisor class group. We know that
there are only finitely many degree 0 divisor classes of a function field by Proposition 1.22,
so from this it follows that J0/UK

∗ is finite. From this we see that that h2/1(J0/UK
∗) = 1.

Lastly, showing h2/1(UK∗/K∗) = 1 follows from UK∗/K∗ ∼= U/(U ∩ K∗), noting that
U ∩ K∗ is finite since it is the multiplicative group of the finite constant field of K, and
using Shapiro’s lemma (Lemma 3.33) to show that h2/1(U) = 1. Putting this together gives
us that h2/1(CK) = n and thus that

h2(CK) = [K : F ] · h1(CK)

for all abelian extensions K/F .

Theorem 4.54 (Second Inequality for global fields). Let F be a global field and let K/F
be a normal extension. Then the norm index (CF : NK/FCK) divides the degree [K : F ].

Proof sketch. Since the proof of the second inequality for global fields is rather long and
technical, we will only give an overview of the steps taken. First, two reductions are made.
The first reduction states that if the second inequality holds for all cyclic extensions of prime
degree, then it holds in all normal extensions (see Lemma 4.6). The second reduction is that
whenever the prime degree l of the extension is not equal to the characteristic of the ground
field, then it suffices to prove the second inequality for all cyclic fields of prime degree l
such that this extension contains a primitive l-th root of unity. In the proof of both cases
Kummer theory is used to characterize the extensions of this form. For more information,
we refer the reader to Chapter VI of [AT68], which is dedicated entirely to this proof.
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We will now work towards proving that the global formation satisfies Axiom II. We
will prove most statements, sometimes skipping proofs of auxiliary statements that will not
help us gain important insights. In the course of proving that the global formation satisfies
Axiom II, we will define an invariant map for the global formation which, as we have seen
in Theorem 4.26 is crucial for understanding the global norm-residue map. We start by
defining the invariant map on the set of idèles.

Let F be a global field and let K/F be a normal extension of degree n with Galois
group G. Let p be a place of F and let q be a place of K above p. Proposition 4.49 tells us
that

Ĥ2(G,
∏
q|p

Kq) ∼= Ĥ2(Gp,Kp).

We can thus see Ĥ2(G, JK) as the direct sum of the local cohomology groups Ĥ2(Gp,Kp)

by assigning to each cocycle class c ∈ Ĥ2(G, JK) the local components cp ∈ Ĥ2(Gp,Kp).
We see that these local components determine c completely.

Definition 4.55. We define the idèle invariant to be the map

invK/F : Ĥ2(G, JK)→ Q/Z, c 7→
∑
p

invKp/Fp
cp.

We have seen that the local invariants invKp/Fp
cp determine cp completely. This is not

the case for the idèle invariant map. In particular, we see that invK/F c = 0 does not imply

at all that c is the class of 1 in Ĥ2(G, JK). The largest part of the remainder of this chapter
will be dedicated to showing that inv c = 0 if and only if c ∈ Ĥ2(G,K∗). Note that we can
see Ĥ2(G,K∗) as a subgroup of Ĥ2(G, JK) as follows. From the exact sequence

0→ K∗ → JK → CK → 0

we get an exact sequence

Ĥ1(G,CK)→ Ĥ2(G,K∗)→ Ĥ2(G, JK)→ Ĥ2(G,CK). (10)

Combining the first and second inequality tells us that Ĥ1(G,CK) = 0 from which it follows
that the map Ĥ2(G,K∗)→ Ĥ2(G, JK) is injective. Whenever we speak of Ĥ2(G,K∗) as a
subgroup of Ĥ2(G, JK), we implicitly use this injection. From now on, we will work with
cohomology groups of both JK and CK . For clarity we will use the following convention.

We will now work towards defining the norm-residue map for global fields. Let c ∈
Ĥ2(G, JK), then we know that c = a ∪ δχ for some a ∈ JF by Theorem 3.49. We can then
write cp as ap ∪ δχp. Here χp = ResGp

χ, which is well-defined since χ is an element of

Ĥ1(G,Q/Z). Denote by (ap,Kp/Fp) the local norm-residue symbol. Then

invp a ∪ δχ = invp ap ∪ δχp

= χp((ap,Kp/Fp))

= χ((ap,Kp/Fp)),

where we see (ap,Kp/Fp) as an element of G. Note that Theorem 4.48 tells us that
(ap,Kp/Fp) = 1 whenever ap is a unit and p unramified. From this we see that the following
map is well-defined.
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Definition 4.56. Let K/F be a normal extension, and let a ∈ JF . Then we define the
idèle norm-residue map to be

JF → Gal(K/F ), a 7→ (a,K/F ) :=
∏
p

(ap,Kp/Fp).

This is well-defined since (ap,Kp/Fp) = 1 at almost all places and G is abelian.

We will see in Theorem 4.74 that this map induces the norm-residue map for class groups.
We will now state some lemmas that will help us prove that Ĥ2(G,K∗) is exactly the

kernel of the idèle invariant map. All proofs can be found in [AT68, Chapter VII.3].

Lemma 4.57. Let L/K/F be extensions with both L/K and K/F normal and let c ∈
Ĥ2(GK/F , JK). Let p be a place of F , and recall that we could write invp = invKp

for
invEq/Kp

for any extension Eq/Kp. Then the local invariant does not change under inflation,
i.e.

invp InfL c = invp c.

From this it follows that for the idèle invariant we have

invL/F InfL c = invK/F c.

Corollary 4.58. Let K1/F and K2/F be two normal extensions and denote by L = K1K2

their compositum. Let c1 ∈ Ĥ2(GK1/F , JK1
) and c2 ∈ Ĥ2(GK2/F , JK2

). If InfL c1 =
InfL c2, then invK1/F (c1) = invK2/F (c2).

This lemma tells us that the idèle invariant map invK/F is only a function of F , and we
may thus write invF for this map.

Lemma 4.59. Let H be a subgroup of G and denote by E the fixed field of F under H. Let
c ∈ Ĥ2(G, JK). Then

invE ResE c = [E : F ] · invF c.

This lemma will be very useful for two reasons. First of all, it tells us that the idèle
invariant map satisfies the second item of Axiom II. Secondly, we will use it in the proof of
Theorem 4.62, in which we show that Ĥ2(GK/F ,K

∗) lies in the kernel of the idèle invariant
map.

We can now show that Ĥ2(GK/F ,K
∗) ⊆ ker(invK/F ).

Proposition 4.60. Let F be a function field and K/F be a cyclic cyclotomic extension.
Let c ∈ Ĥ2(GK/F ,K

∗). Then invK/F (c) = 0.

Proof. We note thatK/F is a cyclic unramified extension. Hence we can write (ap,Kp/Fp) =

ϕ
vp(ap)
p where ϕp is the generator of Gal(Kp/Fp). Let k0 be the constant field of F ; recall

that deg(p) = [F̃p : k0]. If k0 has q elements, then the residue class field F̃p thus has qdeg(p)

elements. From this it follows that in the residue class field,

ϕ
vp(a)
p : x 7→ (xq

deg(p)

)vp(a) for x ∈ Fp.

Now, let c ∈ Ĥ2(GK/F ,K
∗). Then we can write c = a ∪ δχ for some a ∈ F . Embed a as

an idèle, so as (..., a, a, a, ...). We know that the degree of any principal divisor (a) is zero
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(see Proposition 1.20), so this means that
∑

p∈PF

deg(p) · vp(a) = 0. By definition, we have

(a,K/F ) =
∏

p∈PF

(ap,Kp/Fp). Therefore, the element in GK/F that represents (a,K/F ) is

x 7→ xq
∑

deg(p)vp(a)

= xq
0

= x,

which means that (a,K/F ) is the identity. We have thus proven that χ((a,K/F )) = 0 for
all characters χ and thus that inv(a ∪ δχ) = 0.

Proposition 4.61. Let K/F be a normal extension of function fields, and c ∈ Ĥ2(GK/F ,K
∗).

Then there exists a cyclic cyclotomic extension F ′/F such that

ResF ′ InfKF ′ c = 1.

Proof. See [AT68, Chapter VII, page 46].

Theorem 4.62. Let K/F be a normal extension of function fields of degree n. Let c ∈
Ĥ2(GK/F ,K

∗). Then invK/F c = 0.

Proof. Proposition 4.61 tells us that there exists a cyclic cyclotomic extension F ′/F such
that ResF ′ InfKF ′ c = 1. This means that F ′ is a splitting field for InfL c, which means
that there exists a cocycle class c′ ∈ Ĥ2(GF ′/F ) such that InfL c = InfL c

′. From Corollary
4.58 it then follows that invF c = invF c′ and since the latter is zero by Proposition 4.60
we see that invF c = 0.

Now that we know that Ĥ2(GK/F ,K
∗) is part of the kernel of the idèle invariant map,

we can create an invariant map from Ĥ2(GK/F , CK) to Q/Z. We have seen in the exact

sequence (10) that there exists a map Ĥ2(GK/F , JK) → Ĥ2(GK/F , CK), which we will

denote by j. The most intuitive option to create a map from Ĥ2(GK/F , CK) to Q/Z is to

assign each element of the form jc ∈ Ĥ2(GK/F , CK) the same invariant map as the element

c ∈ Ĥ2(GK/F , JK). However, since the map j is not always surjective, this will not give us
a map that satisfies all requirements of Axiom II. We will therefore define the invariant map
on Ĥ2(GK/F , CK) in a different way. First, we will write down three auxiliary statements
that are essentially corollaries of Theorem 4.62.

Corollary 4.63. Let K/F be a normal extension with group G, and let c ∈ Ĥ2(G,CK).
Suppose c = jc = jd for some c, d ∈ Ĥ2(G, JK). Then invF c = invF d.

Corollary 4.64. Let c ∈ jĤ2(G, JK), say c = jc. Let L/K/F be extensions with both L/K
and K/F normal. Then inflation commutes with j, so we have

InfL c = InfL (jc) = j InfL c.

From this it follows that if c is the image of j in any layer, then its inflation to any bigger
layer is also in the image of j.

Corollary 4.65. Let c ∈ Ĥ2(G,CK). Let L1/K and L2/K be two normal extensions
with Galois groups G1 and G2. Suppose that InfL1 c = jc1 and InfL2 c = jc2 for some
c1 ∈ Ĥ2(G1, JL1), c2 ∈ Ĥ2(G2, JL2). Denote by L the compositum of L1 and L2. Then we
have

InfL c = j InfL c1 = j InfL c2.

From this it follows that invF InfL c1 = invF InfL c2, and thus invF c1 = invF c2.
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We cannot yet define a so-called global invariant map, that sends all of Ĥ2(GK/F , CK)→ Q/Z.

However, using the statements above we can define an invariant map on a subset of Ĥ2(GK/F , CK).

Definition 4.66. Let K/F be a normal extension. Then we call a cocycle class c ∈
Ĥ2(GK/F , CK) regular (or a regular element) if there exists a normal extension L/K such

that InfL c = jc for some cocycle class c ∈ Ĥ2(GL/F , JL). We denote the set of regular

elements by H
2
(GK/F , CK).

We can use the corollaries above to see thatH
2
(GK/F , CK) is closed under multiplication,

and therefore conclude that H
2
(GK/F , CK) is a group. We now define the invariant map

for regular elements, which we will also call the regular invariant map.

Definition 4.67. Let c ∈ H2
(GK/F , CK) be a regular element, and let L/K be a normal

field extension such that InfL c = jc for some c ∈ Ĥ2(GL/F , JL). Then we define

invF : H
2
(GK/F , CK)→ Q/Z, c 7→ invF c.

We see that our definition is independent of the choice of representative by Corollary 4.63.
From Corollary 4.65 we see that it is also independent of the choice of L. We can see that

the regular invariant map on H
2
(GK/F , CK) is a homomorphism by noting that for two

regular elements c, d we can always find a field L such that InfL c = jc, InfL d = jd. Then
InfL cd = j(cd) and invF (cd) = invF c+ invF d.

We will now prove that the invariant map on regular cocycles satisfies the second condi-
tion of Axiom II.

Proposition 4.68. Let K/F be a normal extension, and let GK/F be the Galois group.

Let H be a subgroup of GK/F and denote by E the fixed field of H. Let c ∈ H2
(GK/F , CK)

be a regular cocycle. Then ResE c is also a regular cocycle and

invE ResE c = [E : F ] invF c.

Proof. Let L/K be an extension such that InfL c = jc for some c ∈ Ĥ2(GL/F , JL). By
commutativity of the maps Inf,Res and j we see that

InfL ResE c = ResE InfL c = ResE jc = j ResE c.

From this it follows that ResE c is also a regular cocycle and that we can assign to the
cocycle ResE c a regular invariant map according to Definition 4.67. Now by Lemma 4.59
we see that

invE ResE c = [E : F ] invF c

which proves the proposition since we know that assigning invariants is independent of
chosen field extensions and representatives.

Lemma 4.69. Let K/F be a cyclic extension of degree n. Then there exists a regular cocycle

class c ∈ H2
(GK/F , CK) having invariant 1/n.

Proof. See [AT68, Chapter VII, Lemma 5].
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Proposition 4.70. Let K/F be a cyclic extension of degree n. The map

j : Ĥ2(GK/F , JK)→ Ĥ2(GK/F , CK)

is surjective. This means that every cocycle class of CK is regular. Moreover, for c ∈
H

2
(GK/F , CK) we have that invF c = 0 if and only if c = 1. Hence Ĥ2(GK/F , CK) is cyclic

of degree n.

Proof. Lemma 4.69 tells us that there exists a regular cocycle class c ∈ H
2
(GK/F , CK)

which has invF c = 1/n. From this we see that the powers of c form a cyclic group of order

≥ n. Denote this group of powers of c by B ⊆ H2
(GK/F , CK). By Theorem 3.29, we know

that for cyclic groups GK/F , we have H
2
(GK/F , CK) ∼= CF /NK/FCK . However, the second

inequality tells us that (CF : NK/FCK) ≤ n. Combining these arguments tells us that B

contains all of H
2
(GK/F , CK). Moreover, we see that for any integer m, if invF c

m = 0 then
cm = 1, which finishes our proof.

Proposition 4.71. Let K/F be a normal extension of degree n. Then all elements of
Ĥ2(GK/F , CK) are regular and Ĥ2(GK/F , CK) is cyclic.

Proof. Let F ′ be any cyclic extension of degree n over F (take for example a cyclic cyclotomic
extension) and denote by L the compositum KF ′. Let c ∈ Ĥ2(GF ′/F , CF ′) such that

invF c = 1/n (such a class exists by Lemma 4.69). By Lemma 4.57 we see that InfL c
′ then

also has invariant 1/n, and by Proposition 4.68 we see that ResK InfL c
′ then has invariant

0. Since L/K is cyclic, Lemma 4.69 tells us that ResK InfL c
′ = 1, which means that there

exists c ∈ Ĥ2(GK/F , CK) such that InfL c
′ = InfL c.

Since InfL c is a cocycle class of invariant 1/n that means that c is regular and has
invariant 1/n. The group generated by c is then cyclic of order ≥ n. Again, the second
inequality shows that the order of the group generated by c is exactly n. From this it follows

that H
2
(GK/F , CK) = Ĥ2(GK/F , CK) is cyclic of order n.

Definition 4.72. Since all elements of Ĥ2(GK/F , CK) are regular, we see that the domain

of the regular invariant map was actually already all of Ĥ2(GK/F , CK). We can therefore
use the name global invariant map for the regular invariant map.

Now that we have a well-defined global invariant map, we are ready to prove that the
global formation is indeed a class formation.

Theorem 4.73. Let F be a global field, and Ω its separable closure. Denote by G the Galois
group of Ω/F . Then (G, {GK};CK) satisfies Axiom II and therefore is a class formation.

Proof. Proposition 4.71 tells us that we can assign for each cocycle class c ∈ Ĥ2(GK/F , CK)

an invariant invF c ∈ Q/Z. This homomorphism is injective since we have that invF c = 0
if and only if c = 1. Since the assigned invariant of c is independent of the field L to which c
can be inflated, we are allowed to assign invariants to all elements of Ĥ2(G, CΩ). This map
is surjective since there exist extensions of all degrees, and therefore we see that the map

Ĥ2(G, CΩ)→ Q/Z

is an isomorphism satisfying the requirements of Axiom II.
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Now that we have shown that the global formation is indeed a class formation, we can
apply the Main Theorem of class field theory to get a global norm-residue map.

Theorem 4.74. Let K/F be a finite extension of global fields and let a ∈ CF an idèle class,
with (ap)p ∈ JF any idèle that represents a. Then the norm-residue map is the surjective
homomorphism

θK/F : CF → Gal(K/F ), a 7→ (a,K/F ) :=
∏
p∈PF

(ap,Kp/Fp).

As a consequence, the global reciprocity isomorphism is the map

ωK/F : CF /NK/FCK → Gal(K/F ), a+NK/FCK 7→ (a,K/F ).

Proof. We start by noting that this product is well-defined, since almost all places p are
unramified, and ap is a unit for almost all places p. We need to show that for every character
χ of GK/F ,

χ((a,K/F )) = χ(
∏

(ap,Kp/Fp)).

We know that

(a,K/F ) = inv(a ∪ δχ)

=
∑
p

invp(ap ∪ δχp)

where χp is again ResGp
χ and we denote by a the class of a in CF /NK/FCK . By Defini-

tion 4.47, we see that invp(ap ∪ δχp) = χ(ap,Kp/Fp). We thus have that

inv(a ∪ δχ) =
∑
p∈PF

χ(ap,Kp/Fp) = χ(
∏
p

(ap,Kp/Fp))

which finishes the proof.

From Theorem 4.74 we see that the global norm-residue map is indeed induced by the
map of Definition 4.56. We have already seen in Chapter 2 that our algorithm relies on
knowledge of intermediate extensions F ⊆ M ⊆ K. We will now analyze the properties of
these subextensions. First of all, we have the following important theorem, which is also
called the existence theorem. We prove this only for geometric extensions, as this simplifies
the proof quite a bit. For a full proof, see [AT68, Section VIII.3].

Theorem 4.75. Let K be a global function field. Then the open subgroups of finite index
of CK are exactly the norm subgroups.

Proof. We have to prove that any open subgroup of finite index is of the form NL/KCL
according to Definition 4.27. Let B be an open subgroup of finite index in CK . Denote by
θL/K : CK → G the norm-residue map and set h = θL/K(B). Since θL/K is a surjective
homomorphism, we see that (CK : B) = (G : h). Let L be the fixed field of h. Then we
have (CK : B) = [L : K]. By definition, we have that L is fixed under θL/K(NL/KCL),
so we see that θL/K(NL/KCL) ⊆ h or equivalently, NL/KCL ⊆ B. Now the main theorem
of class field theory tells us that (CK : NL/KCL) = [L : K] so from this we see that
(CK : B) = [L : K] = (CK : NL/KCL). Combining this with NL/KCL ⊆ B gives the desired
result.
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Combining this result with Theorem 4.30 gives us the following theorem.

Theorem 4.76. For every open subgroup M of CK of finite index, there exists an abelian
extension E/K such that M = NE/KCE and the reciprocity isomorphism induces an iso-
morphism between CK/M and the Galois group of E/K.

The goal of this chapter was to understand the isomorphism between idèle class groups
and Galois groups. We have seen in Chapter 2 that having enough knowledge of this
algorithm enables us to find field extensions with many rational places. We will now illustrate
how the ramification behaviour of each place is related to the subgroups of JK . In the next
chapter, we will utilize this knowledge to construct an algorithm that finds many new
records.

Theorem 4.77. Let L/K be a finite abelian extension. Let p be a place of K and q a
place of L lying above p. Let m be the smallest non-negative integer such that the m-th
ramification group Vm of Lq/Kp is trivial. Then the ramification degree of p in L/K is
ψ′l(m) = ψ′r(m− 1).

Proof. We know by Theorem 1.53 that the order of the inertia group GT (q|p) is exactly
e(q|p). Moreover, we have seen that the inertia group of q over p is equal to the 0-th
ramification group of the extension Lq/Kp (see Definition 4.35). From this it follows that

e(q|p) = |V0| = (V0 : 1) = (V0 : Vm).

Now by Proposition 4.40 we see that the slope of ϕ between m − 1 and m is exactly
1

(V0:Vm) = 1
e . We thus see that the left derivative of ψ at m is exactly e(q|p). We thus see

that e(q|p) = ψ′l(m) = ψ′r(m− 1).

Theorem 4.78. Let M be an open subgroup of CK of finite index. Let L/K be a finite
abelian extension such that NL/K(CL) = M . Let be H the subgroup of JK containing K∗

such that M = H/K∗. Then for every place p of K we have the following:

1. p is unramified in L/K ⇐⇒ UKp
⊆ H;

2. p splits completely in L/K ⇐⇒ K∗p ⊆ H;

3. p has ramification degree ψ′l((ψ(n)) ⇐⇒ n is the smallest non-negative integer such

that U
(n)
Kp
⊆ H.

Proof. 1. By definition of the local norm-residue map (Theorem 4.48) we have that

θLq/Kp
maps UKp

= U
(0)
Kp

onto Vψ(0)(Lq/Kp) = V0(Lq/Kp) = GT (q|p). We also

know that UKp
⊆ H if and only if the local norm residue map sends UKp

to {id} as
H is the kernel of the global norm-residue map. We thus have that:

UKp
⊆ H ⇐⇒ GT (Q|P ) = {id} ⇐⇒ p is unramified in L/K

where the last implication follows from Theorem 1.55.

2. We know that the local norm residue map sends K∗p to Gal(Lq/Kp) = GZ(q|p) since
it is surjective. We thus have that

K∗p ⊆ H ⇐⇒ GZ(q|p) = {id} ⇐⇒ p splits completely in L/K

where again the last implication follows from Theorem 1.55
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3. Let q be a place of L lying above p. Theorem 4.43 tells us that U
(i)
Kp
⊆ NLq/Kp

Lq if

and only if Vψ(i) = 1. Let n be the smallest non-negative integer such that U
(n)
Kp
⊆

NLq/Kp
Lq. Then we see that Vψ(n) is the first trivial ramification group. From

Theorem 4.77 it then follows that the ramification degree of p in L/K is ψ′l(ψ(n)) if

and only if U
(n)
Kp
⊆ H.
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5 Ramified Extensions

In this chapter, we will show how global class field theory defined in the previous chapter
can be used to create curves over finite fields with many rational points. We will start by
proving Theorem 2.17 is indeed an isomorphism. After that, we will define a similar looking
but slightly more complicated isomorphism that also takes into account ramified extensions.
Once we have done that, we will construct an algorithm that finds ramified extensions with
many rational places. Applying this algorithm to genus 2 hyperelliptic function fields gives
the results stated in Table 5.4. We will finish this chapter by talking about the limitations
of this algorithm and suggesting some directions for future research.

5.1 Unramified isomorphism

We start by investigating the relation between the idèle class group of a function field K
and the divisor class group of K.

Theorem 5.1. Let K be a function field. Then there exists a surjective homomorphism
from the idèle class group CK to the divisor class group ClK .

Proof. We claim that the map sending∏
(xp)p ∈ JK 7→

∑
vp(xp)p ∈ ClK

is well-defined. By definition of idèles, only finitely many entries xp are allowed to have non-
zero valuation. We see that it is surjective since every completion Kp has a uniformizer,
which we denote by tp, and

(1, ...1, t
np1
p1

, 1, ..., 1, t
np2
p2

, 1, ..., 1, t
npj
pj

, 1, ...) 7→
j∑
i=1

npi
pi.

Now we also see that the idèles that correspond to elements of K∗ are sent to the principal
divisors. Taking the quotient by K∗ thus gives a surjective homomorphism from the idèle
class group to the divisor class group.

In order to prove Theorem 2.17 we will have to look at the behaviour of subsets of CK
under this homomorphism. Once we have established which subgroups of the divisor class
group correspond to which subgroups of the idèle class group, we can combine this with
Theorem 4.74. This will then give us the desired isomorphism. We start with some defini-
tions.

Definition 5.2. Let S be a non-empty finite set of places of a function field K. Then we
define the following sets.

DivS = {
∑
p6∈S

npp | np = 0 for almost all p};

PrincS = {
∑
p6∈S

vp(z)p | z ∈ K∗};

ClS = DivS/PrincS .

where we call ClS the S-divisor class group.
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Proposition 5.3. If S = {p} for some place p of degree d, then there exists an exact
sequence

0→ Cl0K → ClS → Z/dZ→ 0.

Proof. We start by defining a map

θ : Div0(K)→ ClS ,
∑
q

mqq 7→
∑
q6=p

mqq + PrincS .

Assume that two divisor classes [
∑
nqq] and [

∑
mqq] are sent to the same element in ClS .

Then we see that nq = mq for all q 6= p and since we have
∑

q nq =
∑

qmq = 0 we see that
np = mp. From this it follows that θ is an injective homomorphism. Moreover, we see that
the principal divisors in Div0(K) are all sent to the identity in ClS . θ can therefore be seen
as an injective map from Cl0K → ClS . We define the map

φ : ClS → Z/dZ,
∑
q6=p

mqq + PrincS 7→
∑
q6=p

mq deg(q) + dZ.

We see that this map is surjective since the degree map is surjective by Proposition 1.18.
Moreover, since the degree of a principal divisor is zero, and the degree of p is d, we see
that any principal S-divisor will be sent to the kernel by φ. We thus see that φ induces a
surjective homomorphism

φ : ClS → Z/dZ.

We see that ker(φ) = Im(θ), which finishes the proof.

Corollary 5.4. If S = {p} for some rational place p then Cl0K
∼= ClS.

A more general version of Proposition 5.3 is the following, whose proof can be found in
[Ros73].

Definition 5.5. Let S be a finite set of places of a function field K. We use the following
notation

D(S) = {
∑
p∈S

npp | np = 0 for almost all p}, P(S) = PrincK ∩ D(S);

DS = {
∑
p6∈S

npp | np = 0 for almost all p}, PS = {
∑
p6∈S

vp(a)p | a ∈ K∗}.

Theorem 5.6. Let d be the smallest positive degree of a divisor in D(S) and i the smallest
degree of a positive divisor in Div(K). Let C be a cyclic group of order d/i. Then the
following sequence is exact.

0→ D(S)0/P(S)→ Div0(K)/PrincK → DS/PS → C → 0.

Corollary 5.7. Let K be a function field and S a finite set of places. The S-divisor class
group is a finite abelian group.

We will now define some subsets of the idèle class group that turn out to correspond to
the S-divisor class group.
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Definition 5.8. Let S be a finite non-empty subset of PK . We define the ring

AS = {(ap)p ∈
∏

p∈PK

Kp | vp(ap) ≥ 0 ∀ p 6∈ S} =
∏
p∈S

Kp ×
∏
p6∈S

OKp
.

We see that AS is a subset of AK : in AS it is determined beforehand which places are
allowed to have negative valuations, whereas in AK we only know that this is allowed for a
finite number of places, but there is still a freedom to choose those places. AS is called the
S-integral ring of AK . Similarly we define the S-idèle group and the S-idèle class group:

JS =
∏
p∈S

K∗p ×
∏
p6∈S

UKp
and CS = (K∗ · JS)/K∗.

The S-idèle class group is a subgroup of the idèle class group, as can be seen from
Definition 5.8. We also see that when the set S becomes larger, the idèle group JS also
becomes larger. When applying class field theory to this, we will see that this leads to
smaller extensions.

Theorem 5.9. Let K be a function field and S be a finite set of places of K. Then the map

ϕ : CK → ClS , [(αp)p] 7→ [
∑
p6∈S

vp(αp) p]

induces an isomorphism CK/CS ∼= ClS.

Proof. We start by proving that this map is well-defined. Let [(αp)p] ∈ K∗ ⊆ JK . We want
to show that ϕ[(αp)p] is the identity in ClS , meaning that it gets sent to the class of PrincS .
Since PrincS = {

∑
p6∈S

vp(z)p | z ∈ K∗}, we see that this condition is satisfied by definition.

To see that the map is surjective, we note that for any element
∑

pj 6∈S
npjpj ∈ DivS we have

that

ϕ((1, ..., 1, t
np1
p1

, 1, ..., 1, t
np2
p2

, 1, ..., t
npm
pm

, 1, ....)) =
∑
pj 6∈S

npj
pj .

We thus see that ϕ is a well-defined and surjective map. All that is left is to show that the
kernel of this map consists of CS . We have that CS = (K∗ ·JS/K∗) so CK/CS ∼= JK/K

∗ ·JS .
We thus have to prove that the kernel of the map JK → ClS is exactly K∗ ·JS . We see that

K∗ · JS = {(αp)p | αp = βp · γ, vp(βp) = 0 for all p 6∈ S, γ ∈ K∗}.

From this it follows almost immediately that K∗ · JS is sent to the identity in the S-divisor
class group, since the map sends

(αp)p 7→
∑
p6∈S

vp(αp) p =
∑
p6∈S

vp(βp) p +
∑
p6∈S

vp(γ) p = 0 +
∑
p6∈S

vp(γ) p ∈ PrincS .

Moreover, we have that any idèle that is sent to the identity in the S-class group must be
of this form, from which we see that the map induces an isomorphism CK/CS ∼= ClS .

We can now prove Theorem 2.17, which we will state again for convenience.
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Theorem 2.17. Let K be a global function field. Then the map ϕo sending

Cl0K → Gal(Ko/K), [p− deg(p)o] 7→
(
Ko|K

p

)
is an isomorphism.

Proof. We first prove that if S = {o}, then CS is indeed the subgroup of CK that corresponds
to an extension Ko/K according to Theorem 4.76. Theorem 4.78 tells us that a place p of
K splits completely in the extension corresponding to a subgroup H ⊆ JK if and only if
K∗p ⊆ H. In our case, we have that H = K∗ · JS . Since

JS = J{o} = K∗o ×
∏
p6=o

UKp
,

we see that the only place that splits completely in the extension is o. Moreover, Theo-
rem 4.78 tells us that a place p of K if and only if UKp

⊆ K. From this it follows that all
places of K are unramified in the extension, and thus that the extension of K that corre-
sponds to CS is exactly Ko/K.

We see that we can write any divisor class of degree zero as [
∑
npp− (

∑
np · deg(p))o].

Let us look at such a degree zero divisor class. Then the isomorphism of Proposition 5.3
sends this divisor class to the class [

∑
npp] in ClS , which will in turn be sent to the idèle

class [(αp)p] where αp = t
np
p for all p 6= o, with np = 0 for almost all p. Now Theorem 4.74

tells us that the main isomorphism for global fields sends

(αp)p ∈ CK 7→
∏
p∈PF

(αp, (K
o)p/Kp).

We know that for unramified extensions,

(αp, (K
o)p/Kp) =

(
Ko|K

p

)vp(αp)

,

so the local norm residue map sends an element x of the local field Kp to the vp(x)-th power
of the Artin symbol of p. From this it follows that the composition of the isomorphisms of
Corollary 5.4, Theorem 5.9 and Theorem 4.74 gives an isomorphism

Cl0K → Gal(Ko/K), [p− deg(p)o] 7→
(
Ko|K

p

)
.

For completeness, we recall the following fact.

Proposition 5.10. Let K be a function field and o a rational place of K. Let ϕo be the map
sending Cl0K → Gal(Ko/K). Let G be a subgroup of Cl0K and G the corresponding subgroup
in Gal(Ko/K). Then a place pi splits completely in (Ko)G if and only if [pi−deg(pi)o] ∈ G.

Proof. This now follows immediately from Theorem 2.17 and Theorem 4.78.
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We will state one more fact about unramified extensions before looking at ramified
extensions. We call the field that corresponds by Theorem 4.76 to the group CK/CS , the
S - Hilbert class field, which we denote by HS . This is the maximal unramified abelian
extension in which the places in S split completely. For more information about the Hilbert
class field in function fields, see [Ros87]. We will point out one property of Hilbert class
fields. This property tells us that whenever the set S contains a rational place, or two
places of coprime degree, then the S-Hilbert class field is a purely geometric extension. This
explains why the extension Ko from Chapter 2 was a purely geometric extension.

Proposition 5.11. Let K be a function field with constant field Fq and let S be a finite set
of places. Then the full constant field of the Hilbert class field is Fqd , where d is the greatest
common divisor of the degrees of places in S.

Proof. Denote by p1, ..pk the places in S and denote by HS the S-Hilbert class field. Recall
that Theorem 1.54 tells us that if we denote by Tp and Zp the fixed fields under the inertia
group and decomposition group of a place p of K, then the Hilbert class field can be written
as

(
⋂
pi∈S

Zpi
) ∩ (

⋂
q 6∈S

Tq).

This means that for all places q 6∈ S, we have e(q) = 1 but not that f(q) = 1. However, for
the places pi ∈ S we have that e(pi) = f(pi) = 1. This means that for all those places

1 = f(pi) =
deg(p′i)

deg(pi)
· [k′ : k],

where k′ is the constant field of the S-Hilbert class field and p′i is a places in HS lying
above pi. Since the Hilbert class field is the maximal abelian unramified extension in which
the places in S split completely, [k′ : k] will attain the highest possible value. We see that
deg(pi) = deg(p′i) · [k′ : k] for all places pi ∈ S. From this it follows that [k′ : k] is the
greatest common divisor of the degrees of the places of S.

5.2 Ramified isomorphism

In this subsection, we will state an isomorphism similar to Theorem 2.17, that also takes
into account ramified extensions. Ideally, we would talk about ramified extensions of a
function field K where no place is forced to split completely. However, Proposition 5.11
tells us that the full constant field of the maximal unramified field extension in which some
places are forced to split completely is d, the greatest common divisor of the degrees of
those places. Continuing that thought, we see that if we require none of the places of K
to split completely, the field that we will work with has an infinitely large constant field.
This is undesirable for two reasons. First of all, the theory that we established in Chapter
4 is written in terms of Tate cohomology groups, which means that it is only valid for finite
groups. In order to create finite Galois groups, we have to work with subgroups H of CK of
finite index. Therefore, we do not gain any practical advances when extending our theory
to infinite extensions. On the other hand, we have seen in Chapter 2 that the rational
places that split completely in the extension are exactly those that provide rational places
in the extension field. This means that for our purposes it is actually favourable to look at
extensions in which we demand that at least one place splits completely, if we choose that
place to be rational. An additional benefit of this construction is that we work with only
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geometric extensions, which simplifies our proofs a bit and makes sure that we stay in the
constant field Fq.

Let us start with a couple of definitions. We will start by defining an analogue to the
divisor class group, which is called the ray divisor class group.

Definition 5.12. Let D =
∑
npp be an effective divisor of a function field K. We say that

an element x ∈ K∗ is equivalent to 1 mod D, denoted by x ≡ 1 mod D, if

for all p ∈ supp(D), vp(x) = 0 and vp(x− 1) ≥ np.

We see that when vp(x − 1) ≥ np, x is an element of the function field that resembles
the identity locally very closely. If that is true for all places in the support of the divisor
D, that means that x lies very close to 1 modulo D, which motivates the notation x ≡ 1
mod D

Definition 5.13. Let D be an effective divisor of a function field K. We define the following
sets.

I(D) = {
∑
p∈PK

npp | np = 0 if p ∈ supp(D)};

P(D) = {
∑
p∈PK

vp(z)p | z ≡ 1 mod D};

ClD = I(D)/P(D).

where we call ClD the ray divisor class group modulo D.

Just like with the divisor class group, we can define the degree zero part of the ray divisor
class group, which we will denote by Cl0D.

Proposition 5.14. Let D be an effective divisor of a function field K. Then Cl0D is a finite
abelian group.

Proof. See [Ros02, p. 139].

The ray divisor class group, just like the divisor class group, is something that MAGMA
can compute. We are therefore looking for an isomorphism between subsets of the ray divisor
class group and the Galois group of certain abelian extensions. We will proceed analogously
to the previous section to create such an isomorphism. We will start by defining the S-ray
class group modulo D. We will always assume that the support of a divisor D lies outside of
the set S. The reason for that is the following. We want the places of S to split completely
in an extension and we will see that the places in D are exactly the places that are allowed to
ramify. As Theorem 1.54 tells us that demanding that a place splits completely is a stronger
requirement than allowing it to ramify, we see that putting places of S in the support of the
divisor D makes no sense.

Definition 5.15. Let S be a finite non-empty subset of PK and D be a divisor such that
supp(D) ∩ S = ∅. Denote by T = S ∪ supp(D). Then we define

DivD,S = {
∑
p6∈T

npp | np = 0 for almost all p};

PrincD,S = {
∑
p6∈S

vp(z)p| z ∈ K∗, z ≡ 1 mod D};
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ClD,S = DivD,S/PrincD,S .

We call ClD,S the S-ray class group modulo D.

We see that when D = 0, we get exactly the definition of the S-class group, i.e.
Cl0,S = ClS . The proof of the following proposition is completely analogous to that of
Proposition 5.3.

Proposition 5.16. Let K be a function field, S a subset of places of K and D an effective
divisor with support outside of S. If S consists of only one place p of degree d, then we have
a short exact sequence

0→ Cl0D → ClD,S → Z/dZ→ 0.

Corollary 5.17. Let D be an effective divisor and S = {p} for some rational place p of a
function field K. Then the map

θ : Cl0D → ClD,S , [
∑
q

nqq] 7→ [
∑
q 6=p

nqq]

is an isomorphism.

Now let D be an effective divisor of K and let S be a finite subset of PK such that
supp(D) ∩ S = ∅. We can then define the following subgroups of the idèle (class) group.

Definition 5.18. Let S be a finite subset of PK and let D =
∑
npp be a positive divisor

with supp(D) ∩ S = ∅. We define the S-congruence subgroup modulo D by

JDS =
∏
p∈S

K∗p ×
∏
p6∈S

U
(np)
Kp

.

We define the corresponding class group by CDS = (K∗ · JDS )/K∗.

We see that for all places that are not in the support of D, this definition is locally
equivalent to the definition of JS . However, for the places that are in the support of the
divisor, we see that only a subset of the unit group is part of the S-idèle group modulo D.
The following theorem gives the relation between the S-ray class group modulo D and the
S-congruence class group.

Theorem 5.19. Let S be a finite set and D =
∑
mp p be an effective divisor with

supp(D) ∩ S = ∅. Let T = supp(D) ∪ S. The following map is an isomorphism:

ϕ : CK/C
D
S → ClD,S , [(xp)] 7→ [

∑
p6∈T

vp(yp) p].

Proof. We first define the following set:

JD = {(xp) ∈ JK | xp ∈ U
(mp)
Kp

for all p ∈ supp(D)}.

We claim that JK = K∗ · JD. Clearly K∗ · JD ⊆ JK . To prove the other inclusion, let
(xp) ∈ JK be any idèle. One can use the strong approximation theorem (Theorem 1.12)
to find an element z ∈ K∗ such that vp(xpz − 1) ≥ mp for all p ∈ supp(D). We then see
that (z)(xp) ∈ JD and moreover that (xp) = (z−1)(z)(xp) ∈ K∗JD. We may thus conclude
JK = K∗ · JD and we can write any idèle (xp) ∈ JK as (z)(yp) ∈ K∗ · JD.
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The map that will give us the desired isomorphism is the following:

ϕ : CK → ClD,S [(xp)] 7→ [
∑
p6∈T

vp(yp) p].

We will prove that this map is a surjective homomorphism with kernel CDS . First, we show
that this map is a well-defined group homomorphism. Every idèle of the form (x) for some
x ∈ K∗ will have (yp) = id and therefore vp(yp) = 0 for all p ∈ T . This means that K∗ is
sent to the identity by ϕ, thus ϕ is well-defined. Next, we note that the map is surjective.
Let D′ =

∑
npp ∈ DivD,S . Then we know np = 0 for all p ∈ supp(D). Therefore any idèle

class [(xp)] with vp(xp) = np for all p 6∈ S will be mapped onto [D′].

To finish this proof, we need to show that the kernel of ϕ is exactly CDS . We start by
showing that ker(ϕ) ⊆ CDS . By definition,

JDS =
∏
p∈S

K∗p ×
∏
p6∈S

U
(mp)
Kp

.

This means that xp ∈ UKp
for p 6∈ T . From this we see that vp(xp) = 0 for any (xp) ∈ JDS .

We thus see that any class in CDS will be sent to the zero class in ClD,S and thus CDS ⊆ ker(ϕ).
On the other hand, let [(xp)] be a divisor class that is sent to the principal S-divisor class

modulo D. We will show that (xp) ∈ JDS . We have seen that we can write (xp) = (z)(yp)
for some z ∈ K∗, (yp) ∈ JD. Now saying that [(xp)] is sent to PrincD,S is equivalent to
saying that there exists some u ∈ K∗ ∩ JD such that

vp(u) = vp(yp) for all p 6∈ T.

Let us look at the idèle (wp) = (u−1)(yp). We see that for places p 6∈ T we have that
vp(u) = vp(yp). Therefore vp(wp) = 0, and wp ∈ UKp

. For places in the support of D, we

see that yp ∈ U
(mp)
Kp

by definition, since (yp) ∈ JD. On the other hand, we have that

vp(u−1 − 1) = vp(u−1) + vp(1− u) = −vp(u) + vp(u− 1) ≥ mp,

where vp(u) = 0 by Definition 5.12. From this it follows that for all p ∈ supp(D) we have that

u · yp ∈ U
(mp)
Kp

, and we see that (wp) = (u)(yp) ∈ JDS . Now we see that [(xp)]K∗ = [(wp)]K
∗

and therefore we conclude that (xp) ∈ CDS . We have thus seen that

[(xp)] ∈ ker(ϕ) ⇐⇒ (xp) ∈ CDS ,

which concludes our proof.

Proposition 5.20. Let S be a finite set of places of K and D a divisor with supp(D)∩S = ∅.
Then CDS is a subgroup of finite index in CK .

Proof. We have seen in Proposition 5.16 that whenever S consists of one finite place, ClD,S is
finite. Requiring another place to split completely will only make the divisor group smaller.
Theorem 5.19 tells us that CK/C

D
S is isomorphic to ClD,S , and as ClD,S is a finite group,

CDS has finite index in CK .

We can now characterize the field extensions that correspond to this subgroup of the
idèle class group under the reciprocity law isomorphism.
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Definition 5.21. Let S be a finite set of places of K and D a divisor with supp(D)∩S = ∅.
Then Proposition 5.20 tells us that CDS is a subgroup of finite index in CK and therefore
by Theorem 4.76 there exists an extension E such that CK/C

D
S
∼= Gal(E/K). We call

this extension the S-ray class field modulo D, and denote it by KD
S . We say that D is the

conductor of the field E.

Theorem 5.22. The S-ray class field modulo D is the maximal abelian extension such that

1. The places in S split completely;

2. The places in the support of D ramify with ramification degree ψ′l(ψ(np)) ;

3. All other places are unramified.

Proof. This follows immediately from Theorem 4.78.

Let us now look at the situation where S consists of only one rational place o. We have
seen that in that case we have an isomorphism

θ : Cl0D → ClD,S , [
∑
p

npp−
∑
p

np deg(p)o] 7→ [
∑
p6=o

npp].

Since we also have an isomorphism

ϕ : CK/C
D
S → ClD,S , [(xp)] 7→ [

∑
p∈T

vp(yp) p],

we can look at ϕ−1 ◦ θ, which gives us an isomorphism

Cl0D → CK/C
D
S ,

[

m∑
i=i

npi
pi −

m∑
i=1

npi
deg(pi)o] 7→ [(1, ..., 1, t

np1
p1

, 1, ...., 1, t
np2
p2

, 1, ..., 1, t
npm
pm

, 1, ...).

Theorem 5.23. Let K be a function field, o a rational place of K and S = {o}. Let D be a
divisor such that o is not in the support of D. Combining the map ϕ−1 ◦ θ : Cl0D → CK/C

D
S

with the reciprocity law isomorphism gives a map

ψ : Cl0D → Gal(KD
S /K).

Let G be a subgroup of Cl0D. Denote by G the corresponding subgroup in Gal(KD
S /K) and

let E = (KD
S )G be the corresponding intermediate extension. Let H ⊆ I(D) such that

G = H/P(D). Then

1. a place p splits completely in E/K if and only if [p− deg(p)o] ∈ G;

2. E has conductor D′ ≤ D if and only if

{
∑
p 6=o

vp(z)p | z ≡ 1 mod D′} ⊆ H.

Proof. 1. We know from Theorem 4.78 that in the isomorphism CK/M → Gal(L/K) a
place p splits completely if and only if Kp ⊆ H, where M = H/K∗. We see that under
the isomorphism ϕ−1 ◦ θ, the generator of Kp, which is the idèle (1, ...., 1, tp, 1, ...) gets
sent to [p − deg(p)o]. From this it follows that Kp ⊆ H ⇐⇒ [p − deg(p)o] ∈ G.
Therefore we see that pi splits completely in E/K if and only if [p− deg(p)o] ∈ G.
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2. For the second statement, we see that

Cl0D = I0(D)/P(D) =

{
∑

p∈PK

npp | np = 0 if p ∈ supp(D),
∑
np deg(p) = 0}

{
∑

p∈PK

vp(z)p | z ≡ 1 mod D}
.

Now if we take the quotient of Cl0D with the set

{
∑
p6=o

vp(z)p | z ≡ 1 mod D′}

{
∑
p6=o

vp(z)p | z ≡ 1 mod D}

we see that we get exactly Cl0D′ . Theorem 5.19 then tells us that D′ is the conductor
of the intermediate field E.

5.3 Construction of the algorithm

In this section, we will show how we use the information above to construct an algorithm
that finds ramified extensions fields with many rational places. The constant fields of these
function fields are Fq with q prime between 5 and 13.

Let k be a finite field of cardinality q. We want to create an input set of suitable genus
2 function fields. As genus 2 function fields are always hyperelliptic, we can create a list
of polynomials f ∈ k(x) such that the function field k(x, y)/(y2 − f) is well-defined. In
practice this means that we make a list containing separable degree 5 (and 6) polynomials
with coefficients in k. If the hyperelliptic function field has enough rational places, we add
the defining polynomial to the set polmanyplaces. We run the algorithm for each of these
hyperelliptic function fields.

Just like in the unramified algorithm, we first need to create the auxiliary sets Results
and set. This goes analogously to the construction in Chapter 2, apart from adding a
divisor 1*pl1[3] to the tuples in set. This is needed to ensure that the tuples in set are
of the right type to save all needed information.

For each function field, we create a suitable set of divisors. Since every function field has
infinitely many places, and therefore infinitely many divisors, one needs to specify a set of
conditions. For example, for a function field K we can consider the set

D2plus3 := {1 · p2 + 1 · p3 | p2, p3 ∈ PK ,deg(p2) = 2, deg(p3) = 3}

consisting of all divisors that are the sum of a degree two and a degree three place.

For each of the divisors in this set we compute the ray divisor class group modulo D
and its degree zero part Cl0D. We then compute the subgroups of Cl0D of index less than 50.
Once that is done, we run almost the same algorithm as in the unramified case, but with a
few modifications. First of all, in unramified extensions we can use Hurwitz’ genus formula
together with Dedekind’s different formula to immediately see g′ = d(g − 1) + 1, where
d is the index of the subgroup and g the genus of the ground field. Since we are work-
ing with ramified extensions now, Dedekind’s different theorem does not provide such a
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simple formula and we need to compute the genus explicitly. Secondly, in ramified exten-
sions, it is no longer true that all rational places in the extension field come from rational
places in the ground field that split completely. They can also come from rational places
in the ground field that ramify completely (See Theorem 1.35). We avoided this situation
by not putting any rational places in the divisor, but this is an important point nevertheless.

We will now dive into some more technical details of the algorithm. Most importantly,
this algorithm is a lot more time-consuming to run than the unramified algorithm. This
is mainly due to the fact that it runs over a large set of divisors for each hyperelliptic
function field. This is why we let this algorithm run only over genus 2 function fields; the
algorithm already took over a week to run over all irreducible polynomials over F13 that
had coefficient 1 in front of its degree 9 and degree 8 terms. Another reason is that it has
to compute the genus of each abelian extension explicitly, which is quite time-consuming
already for small genera.

We tried to reduce this issue by running on a 20 CPU computer. In order to do so,
we created a function that had as input a hyperelliptic polynomial, and as output a list
containing for 1 ≤ g ≤ 50 the highest number of rational places found in a function field of
genus g, together with the data to reconstruct that function field (see Appendix). This was
feasible, since the input set for the ramified algorithm consisted of a few thousand polyno-
mials. Defining a function like this enabled us to run the algorithm in parallel, which speeds
up the computation by a factor 20. The reason why we did not create a separate function
to run in parallel for the unramified algorithm, where we worked with degree 9 polynomials,
was that the input set there could easily consist of more than 10 million polynomials. Using
a function means that you get an output for each polynomial in the input set. As this
output consists of up to 50 tuples of a genus, a number of places, a divisor, a subgroup and
a rational place, this will use too much storage when running over more than 10 million
polynomials.

Let us look at what the output of the ramified algorithm tells us. The following was a
small part of the output when running over genus 2 ground fields over F7.

36, 100,

<

y^2 + 6*x^5 + 2*x^4 + 5*x^3 + x^2 + 6,

(x + 5),

Abelian Group isomorphic to Z/42

Defined on 1 generator in supergroup:

$.1 = 20*$.1

Relations:

42*$.1 = 0,

(1/x, 1/x^3*y)

>

This output tells us the following. Most importantly, there exists a function field of
genus 36 that has 100 rational places, a new record! How can we reconstruct this function
field? We see that it is created as a field extension of the function field with defining
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polynomial y2 + 6x5 + 2x4 + 5x3 + x2 + 6. This function field has ray divisor class group
modulo the degree 2 divisor 1·(x+5) isomorphic to Z/840Z+Z. First, we take the degree zero
part which corresponds to demanding that one fixed rational place S splits completely. This
leaves us with a S-ray class group modulo D isomorphic to Z/840Z. Taking the subgroup
isomorphic to Z/42Z and looking at the fixed field of the (1/x, 1/x3y)-ray class field modulo
(x+ 5) gives a degree 20 field extension. We can check that this field extension indeed has
genus 36 and 100 rational places in the following way.

First, we want to discover which places split completely in the extension that gives
us 100 rational points. The reason for this is that for each index d, there exist different
subgroups of the ray class group of that index. Although these subgroups are isomorphic,
they give non-isomorphic field extensions. We can illustrate this difference as follows. If we
ask MAGMA to check the number of rational places of the extension that we get using the
output, we get the following.

A:=AbelianExtension(set[36][2], set[36][3]+Z);

Genus(A);

NumberOfPlacesOfDegreeOne(A);

36

20

We see that this extension has genus 36, but only 20 rational places, although our
algorithm told us that it should have 100 rational places. This happens because MAGMA
does not know which of the isomorphic subgroups of index 20 it needs to choose. We can
force MAGMA to choose the subgroup that we want as follows. First, we make a list of
those divisors that split completely in the extension that we are given.

for i in [1..#pl1] do

D:= g(pl1[i]-pl1[1]);

if D in S then

print i;

end if;

end for;

1

4

5

8

9

Using this, we can ask MAGMA for the subgroup that is completely generated by the
image of those places in the ray class group. The map g sends the group of divisors to the
ray class group. Using this subgroup (which is isomorphic to the subgroup taken above, but
not equal), we can then form the corresponding abelian extension. Once we have done that,
we can ask MAGMA to compute its genus and its number of rational points.

CC:=sub<C | g(pl1[1]), g(pl1[4]), g(pl1[5]), g(pl1[8]), g(pl1[9])>;

A:=AbelianExtension(set[36][2], CC);

Genus(A);
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NumberOfPlacesOfDegreeOne(A);

36

100

This time, we do get a function field with 100 rational places and genus 36. At the
moment of writing, there is no lower bound known at manypoints.org. The criterion for a

lower bound to be accepted is that it is at least
Ug(q)−q−1√

2
+ q+ 1 where Ug(q) is the current

best known upper bound. In the case of g = 36, q = 7 we have Ug(q) = 117. We thus see
that the minimal lower bound is 86, and since our function field has 100 rational places this
is clearly an improvement of the current situation.

5.4 Results and discussion

We will first state a table with all new records. We only added the results that are still
records when we take into account the results from Chapter 2.

finite field genus number of rational places previous bound
F7 8 36 35 - 38
F7 15 56 52 - 60
F7 16 56 55* - 63
F7 29 80 ... - 98
F7 36 100 ... - 117
F7 50 112 ... - 152
F11 7 48 44 - 50
F11 13 64 60 - 77
F11 21 84 80 - 110
F11 22 96 91* - 114
F11 23 96 88 - 119
F11 24 96 92 - 123
F11 26 105 ... - 131
F11 29 112 ... - 142
F11 31 120 110* - 149
F11 34 132 121* - 160
F11 41 144 ... - 185
F11 43 144 ... - 192
F11 47 168 ... - 206
F13 14 77 65 - 91
F13 19 96 90 - 115
F13 27 126 ... - 152
F13 28 126 117* - 156
F13 40 168 156* - 207
F13 46 180 ... - 231

Table 2: Records found using the ramified algorithm
* these are bounds that we found using the unramified algorithm in Chapter 2.

manypoints.org
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We have found these records by letting the algorithm run over the following sets.

1. Genus 2 over F7 with all irreducible degree 5 polynomials with at least 8 rational
places and divisors consisting of 1 degree 2 or degree 3 place;

2. Genus 2 over F7 with all separable degree 5 polynomials with at least 8 rational places
and divisors consisting of 1 degree 2 place;

3. Genus 2 over F11 with irreducible degree 5 polynomials with at least 12 rational places
and divisors consisting of 1 degree 2 or degree 3 place. Ran over 1112 of the 3652
polynomials of this form.

4. Genus 2 over F11 with 430 separable degree 5 polynomials with at least 12 rational
places and divisors consisting of 1 degree 2 place. All polynomials were of the form
x5 + a4x

4 + a3x
3 + a2x

2 + x.

5. Genus 2 over F13 with all separable degree 5 polynomials of the form x5 +x4 +a3x
3 +

a2x
2 +a1x+a0 where a0 is either 0 or 1. These polynomials corresponded to function

fields with at least 14 rational places. The divisors consisted of 1 degree 2 place

We see that the ramified algorithm gives a lot of records that cannot be found using the
unramified algorithm. The ramified algorithm has several advantages over the unramified
algorithm.

The first advantage is that the ramified algorithm creates extensions of all genera. The
genus of the unramified algorithm is always of the form d · (g − 1) + 1, when g is the genus
of the ground field. As we can see from the results on the previous page, the ramified
algorithm gives records for many genera. Moreover, when looking at the output sets, we see
that almost all genera were reached by the ramified algorithm.

As the unramified experiment has already been carried out for ground fields of genus 2
and 3 in [Rök12] and [Sol15] respectively, it is very likely that not many more records will
be found this way. For hyperelliptic genus 4 function fields over finite field of cardinality
less than 7, almost all results that can be found this way are found in this thesis. Running
the unramified algorithm over larger input sets with separable polynomials of degree 9 or 10
over finite field with cardinality 11 of 13 might give some more records. One can also run
the unramified algorithm over genus 5 polynomials, but this will only give possible records
for genera that are 1 mod 4.

Moreover, we expect that the ramified algorithm can be used to find many more records,
if more computer power becomes available. This is mainly due to the fact that this algo-
rithm has only been run over a very small part of the (infinitely large) possible input set.
First of all, for most cases it was not possible to run over all degree 5 polynomials that had
enough rational places. Moreover, we did not even consider the degree 6 polynomials that
correspond to genus 2 function fields. Even more importantly, we only considered genus 2
function fields. Considering the amount of records we found using this set, it is quite likely
that running this algorithm over genus 3 function fields will give a lot of new records. But
the most significant cut that we made is to only consider divisors consisting of one degree
2 place. When looking at the records found in [Rök13], we see that the divisors that gener-
ate the records are of different forms. All divisors that generated records there had degree
larger than two, most of the time consisting of multiple places. If we compare those results
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to ours, this leads to promising prospects. Considering the fact that only running over divi-
sors consisting of one degree 2 place already lead to many new records, it is quite reasonable
to expect that running the ramified algorithm over a larger set of divisors will give many
more records. We can then also use Theorem 5.23 to control the ramification degree of
the intermediate extensions. Unfortunately computers are not yet powerful enough to work
with such large sets (input sets easily consist of 10 billion polynomials). However, once these
computers do exist and become available to mathematicians, this would be a good place to
start further research.

To conclude this discussion, we share one final observation. Whenever a record was
found, it was found multiple times, quite often hundreds of times. This implies that there
exists some kind of symmetry in the set of extensions. After analyzing the data, no direct
relation has been found between the sets that generated the same record. It is not true in
general that ground fields that produce a record for one genus have the same result for the
other genera, nor are there any obvious relations between their defining polynomials. As we
have not found an explanation for this phenomenon in the literature, this might be another
interesting direction for future research.
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6 Appendix

6.1 Unramified algorithm

We will start by writing down the unramified algorithm. Below is the code used for the
algorithm that considered genus 4 function fields over F5. As this input set was still relatively
small, the algorithm ran over all separable polynomials of both degree 9 and 10 whose
corresponding function fields had many places.

k:=GF(5);

R<x> := PolynomialRing(k);

P<y> := PolynomialRing(R);

lijst9:=[ [a,b,c,d,e,f,g,h,i]: a in k, b in k, c in k, d in k, e in k, f in k,

g in k, h in k, i in k ];

poli459 :=[];

for i in [1..#lijst9] do

f:= (x^9+lijst9[i][1]*x^8+lijst9[i][2]*x^7+lijst9[i][3]*x^6+lijst9[i][4]*x^5+

lijst9[i][5]*x^4+lijst9[i][6]*x^3+lijst9[i][7]*x^2+ lijst9[i][8]*x+

lijst9[i][9]);

if IsSeparable(f) then

Append(~poli459, f);

end if;

end for;

k:=GF(5);

R<x> := PolynomialRing(k);

P<y> := PolynomialRing(R);

lijst10:=[ [a,b,c,d,e,f,g,h,i,j]: a in k, b in k, c in k, d in k, e in k,

f in k, g in k, h in k, i in k, j in k ];

poli4510 :=[];

for i in [1..#lijst10] do

f:= (x^10+ lijst10[i][10]*x^9+lijst10[i][1]*x^8+lijst10[i][2]*x^7+

lijst10[i][3]*x^6+lijst10[i][4]*x^5+lijst10[i][5]*x^4+lijst10[i][6]*x^3+

lijst10[i][7]*x^2+lijst10[i][8]*x+lijst10[i][9]);

if IsSeparable(f) then

Append(~poli4510, f);

end if;

end for;

poli45:= poli459 cat poli4510;

polmanyplaces45:=[];

for i in [1..#poli45] do

k:=GF(5);

R<x> := PolynomialRing(k);

P<y> := PolynomialRing(R);

L<y> := FunctionField(y^2-poli45[i]);
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if #Places(L,1) gt 8 then

Append(~polmanyplaces45, poli45[i]);

end if;

end for;

% We now have a set of polynomials that correspond to function fields with

at least 9 rational places

k:=GF(5);

R<x> := PolynomialRing(k);

P<y> := PolynomialRing(R);

h:= polmanyplaces45[1];

L<y> := FunctionField(y^2-h);

pl:=Places(L,1);

C, f, g:=ClassGroup(L);

l:=Ngens(C);

G:=Generators(C);

GG:=Exclude(G, C.l);

C0:= sub< C | GG>;

CC:=Subgroups(C0);

S:= CC[2]‘subgroup;

m:=<h, S, pl[3]>;

% The tuple m that we create here is a place holder that is created so

that when we create "set", the elements are of the right type.

% The chosen subgroup and rational place are completely random.

% "set" will store the defining polynomial, subgroup of the divisor class group

and place that splits completely that give the record.

for i in [1..100] do

Results[i]:= 0;

end for;

set:=[* *];

for i in [1..100] do

Append(~set, m);

end for;

for b in [1..#polmanyplaces45] do

k:=GF(5);

R<x> := PolynomialRing(k);

P<y> := PolynomialRing(R);

L<y> := FunctionField(y^2-polmanyplaces45[b]);

pl:=Places(L,1);

C, f, g:=ClassGroup(L);

l:=Ngens(C);

G:=Generators(C);

GG:=Exclude(G, C.l);

C0:= sub< C | GG>;
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CC:=Subgroups(C0);

for i in [2..#CC-1] do

S:= CC[i]‘subgroup;

T:= Index(C0, S);

if T lt 17 then

for j in [1..#pl] do;

kk:=0;

for a in [1..#pl] do;

D:= g(pl[a]-pl[j]);

if (D in S) then

kk:=kk+1;

end if;

end for;

l:= kk*T;

x:= 3*T+1;

if Results[x] lt l then

Results[x]:= l;

set[x]:= <polmanyplaces45[b], S, pl[j]>;

end if;

end for;

end if;

end for;

if b eq 1 mod 1000 then

for i in [1..50] do

if Results[i] gt 0 then

PrintFileMagma( "res45.m", <i, Results[i], set[i]>);

end if

end for;

end if;

end for;

% The command above is to save the results in a file. If the algorithm

stops halfway, this way we still have most of the valuable information.

% To immediately see all results after the algorithm has finished,

we print them here as well.

for i in [1..50] do

if Results[i] gt 0 then

print <i, Results[i], set[i]>;

end if;

end for;

We will now give a list of the information necessary to verify the results in Table 2.4.
Note that in all cases the place that splits completely is the infinite place. This might
seem a bit suspicious, but it is in fact very well explainable. When the algorithm runs over
all possible candidates for the rational place o, it uses the order that MAGMA produces
them in. When listing rational places in MAGMA, the first rational place is always the
infinite place. In the example in Chapter 2.4 for q = 5, g = 34, N = 77 we see that places
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1,2,3,6,7,10 and 11 split completely. Any of these places can fulfill the role of o in this case.
However, our algorithm is built in such a way that only the first place that gives a high
number of rational places is saved. This set is only overwritten when a higher number of
places is found, which is why it makes sense that the places that we encounter as o are often
the infinite ones. When looking at the results of the ramified algorithm, we will encounter
some records that do not have the infinite place as the place that splits completely.

For some subgroups, we have written down the generators. We do this whenever mul-
tiple isomorphic subgroups exist. For example, in the case of the record for genus 46
over F11, there are 18 different subgroups of the degree zero class group that are isomorphic
to Z/1935Z. By writing down these generators one can easily see which subgroup provides
the new record.

F7 g = 16, N = 55
polynomial y2 + 6 ∗ x9 + 4 ∗ x8 + 5 ∗ x7 + 1 ∗ x6 + 6 ∗ x5 + 2 ∗ x3 + 5 ∗ x2 + 6 ∗ x+ 6
subgroup Z/1661Z
o (1/x, 1/x5 ∗ y)

F7 g = 28, N = 81
polynomial y2 + 6 ∗ x9 + 3 ∗ x8 + 6 ∗ x7 + 5 ∗ x6 + 2 ∗ x5 + 2 ∗ x4 + 5 ∗ x3 + 6 ∗ x2 + 6
subgroup Z/795Z
o (1/x, 1/x5 ∗ y)

F7 g = 31, N = 90
polynomial y2 + 6 ∗ x9 + 6 ∗ x8 + 5 ∗ x7 + 5 ∗ x6 + 5 ∗ x4 + 2 ∗ x3 + 3 ∗ x2 + 3 ∗ x
subgroup Z/2Z + Z/260Z, X.1 = C0.1, X.2 = C0.2 + 5 ∗ C0.3
o (1/x, 1/x5 ∗ y)

F7 g = 34, N = 99
polynomial y2 + 6 ∗ x9 + 6 ∗ x8 + 5 ∗ x7 + 5 ∗ x6 + 2 ∗ x5 + 5 ∗ x4 + 2 ∗ x3 + 4 ∗ x2 + 5 ∗ x
subgroup Z/2Z + Z/2Z + Z/2Z + Z/42Z
o (1/x, 1/x5 ∗ y)

F7 g = 37, N = 108
polynomial y2 + 6 ∗ x9 + 6 ∗ x8 + 4 ∗ x7 + 5 ∗ x6 + 4 ∗ x5 + 4 ∗ x4 + 1 ∗ x2 + 3 ∗ x
subgroup Z/2Z + Z/2Z + Z/2Z + Z/42Z

X.1 = C0.2, X.2 = C0.1, X.3 = 3 ∗ C0.4, X.4 = 2 ∗ C0.5
o (1/x, 1/x5 ∗ y)

F7 g = 43, N = 112
polynomial y2 + 6 ∗ x9 + 6 ∗ x8 + 5 ∗ x7 + 3 ∗ x6 + 2 ∗ x5 + 6 ∗ x4 + 4 ∗ x3 + 6 ∗ x2 + 5 ∗ x+ 6
subgroup Z/2Z + Z/162Z, X.1 = C0.1, X.2 = C0.2 + 7 ∗ C0.3
o (1/x, 1/x5 ∗ y)

F7 g = 46, N = 120
polynomial y2 + 6 ∗ x9 + 6 ∗ x8 + 5 ∗ x7 + 1 ∗ x6 + 1 ∗ x5 + 4 ∗ x4 + 6 ∗ x2 + 5 ∗ x
subgroup Z/2Z + Z/2Z + Z/2Z + Z/42Z
o (1/x, 1/x5 ∗ y)
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F7 g = 49, N = 128
polynomial y2 + 6 ∗ x9 + 6 ∗ x8 + 5 ∗ x7 + 2 ∗ x6 + 3 ∗ x5 + 6 ∗ x4 + 4 ∗ x3 + 6 ∗ x2 + 2 ∗ x
subgroup Z/2Z + Z/2Z + Z/2Z + Z/34Z

X.1 = C0.1, X.2 = C0.2, X.3 = C0.3, X.4 = 16 ∗ C0.4
o (1/x, 1/x5 ∗ y)

F11 g = 16, N = 75
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 9 ∗ x7 + 2 ∗ x6 + 3 ∗ x5 + 5 ∗ x4 + 5 ∗ x3 + 8 ∗ x2 + 9 ∗ x+ 2
subgroup Z/7823Z
o (1/x, 1/x5 ∗ y)

F11 g = 22, N = 91
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 9 ∗ x7 + 7 ∗ x6 + x5 + x4 + 3 ∗ x3 + 3 ∗ x2 + 10
subgroup Z/6177Z
o (1/x, 1/x5 ∗ y)

F11 g = 25, N = 104
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 6 ∗ x6 + 7 ∗ x5 + 5 ∗ x4 + 1 ∗ x3 + 7 ∗ x2 + 10 ∗ x+ 10
subgroup Z/2Z + Z/2Z + Z/2Z,

X.1 = C0.12, X.2 = C0.1 + C0.3, X.3 = C0.3 + C0.4 + 2 ∗ C0.5
o (1/x, 1/x5 ∗ y)

F11 g = 31, N = 120
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 10 ∗ x6 + 10 ∗ x5 + 6 ∗ x4 + 6 ∗ x3 + 4 ∗ x2 + 7 ∗ x
subgroup Z/2Z + Z/1390Z, X.1 = C0.1, X.2 = 9 ∗ C0.2 + 2 ∗ C0.3
o (1/x, 1/x5 ∗ y)

F11 g = 34, N = 121
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 10 ∗ x7 + 3 ∗ x6 + 5 ∗ x5 + 8 ∗ x4 + 5 ∗ x3 + 10 ∗ x+ 10
subgroup Z/2015Z
o (1/x, 1/x5 ∗ y)

F11 g = 37, N = 132
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 6 ∗ x6 + 7 ∗ x5 + 5 ∗ x4 + 6 ∗ x3 + 3 ∗ x2 + 10 ∗ x
subgroup Z/2Z + Z/2Z + Z/2Z + Z/254Z

X.1 = C0.1, X.2 = C0.3, X.3 = C0.4, X.4 = C0.2 + 6 ∗ C0.5
o (1/x, 1/x5 ∗ y)

F11 g = 40, N = 143
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 9 ∗ x6 + 4 ∗ x5 + 1 ∗ x4 + 6 ∗ x3 + +6 ∗ x2 + 7 ∗ x+ 7
subgroup Z/7Z + Z/273Z
o (1/x, 1/x5 ∗ y)

F11 g = 43, N = 168
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 9 ∗ x6 + 6 ∗ x5 + 2 ∗ x4 + 4 ∗ x3 + 4 ∗ x2 + 9 ∗ x
subgroup Z/2Z + Z/2Z + Z/434Z,

X.1 = C0.1, X.2 = 7 ∗ C0.2, X.3 = 12 ∗ C0.2 + 2 ∗ C0.3
o (1/x, 1/x5 ∗ y)
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F11 g = 46, N = 165
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 2 ∗ x7 + 8 ∗ x5 + 2 ∗ x4 + 3 ∗ x3 + 6 ∗ x2 + 9 ∗ x+ 2
subgroup Z/1935Z, X.1 = 9 ∗ C0.1 + 1162 ∗ C0.2
o (1/x, 1/x5 ∗ y)

F11 g = 49, N = 176
polynomial y2 + 10 ∗ x9 + 10 ∗ x8 + 10 ∗ x6 + 6 ∗ x5 + 5 ∗ x4 + 8 ∗ x3 + 9 ∗ x2 + 10 ∗ x
subgroup Z/2Z + Z/2Z + Z/200Z + Z/2Z

X.1 = C0.2, X.2 = C0.1, X.3 = C0.3 + C0.4, X.4 = C0.3 + 8 ∗ C0.5
o (1/x, 1/x5 ∗ y)

F13 g = 22, N = 112
polynomial y2 + 12 ∗ x9 + 12 ∗ x8 + 12 ∗ x6 + 5 ∗ x5 + 4 ∗ x4 + 2 ∗ x3 + 2 ∗ x+ 2
subgroup Z/2Z + Z/2Z + Z/1704Z

X.1 = C0.1, X.2 = C0.2 + 2 ∗ C0.3, X.3 = C0.3 + 3406 ∗ C0.4,
o (1/x, 1/x5 ∗ y)

F13 g = 28, N = 117
polynomial y2 + 12 ∗ x9 + 12 ∗ x8 + 12 ∗ x7 + 9 ∗ x4 + 12 ∗ x3 + 9 ∗ x2 + 4 ∗ x+ 9
subgroup Z/4905Z
o (1/x, 1/x5 ∗ y)

F13 g = 31, N = 130
polynomial y2 + 12 ∗ x9 + 12 ∗ x8 + 12 ∗ x6 + 7 ∗ x5 + 5 ∗ x4 + 3 ∗ x3 + 11 ∗ x+ 2
subgroup Z/2Z + Z/1780Z

X.1 = C0.1, X.2 = 5 ∗ C0.3
o (1/x, 1/x5 ∗ y)

F13 g = 34, N = 143
polynomial y2 + 12 ∗ x9 + 12 ∗ x8 + 12 ∗ x6 + 2 ∗ x5 + 3 ∗ x4 + 5 ∗ x3 + 8 ∗ x2 + 10 ∗ x+ 4
subgroup Z/4Z + Z/1216Z
o (1/x, 1/x5 ∗ y)

F13 g = 37, N = 156
polynomial y2 + 12 ∗ x9 + 12 ∗ x8 + 12 ∗ x6 + 7 ∗ x5 + 8 ∗ x4 + 7 ∗ x2 + 9 ∗ x+ 2
subgroup Z/2Z + Z/2034Z

X.1 = 3 ∗ C0.3, X.2 = C0.2 + C0.4
o (1/x, 1/x5 ∗ y)

F13 g = 40, N = 156
polynomial y2 + 12 ∗ x9 + 12 ∗ x8 + 12 ∗ x6 + 10 ∗ x5 + 8 ∗ x4 + 3 ∗ x3 + 1 ∗ x2 + 12 ∗ x+ 4
subgroup Z/2Z + Z/2Z + Z/2Z + Z/522Z
o (1/x, 1/x5 ∗ y)

F13 g = 49, N = 192
polynomial y2 + 12 ∗ x9 + 12 ∗ x8 + 12 ∗ x6 + 1 ∗ x5 + 7 ∗ x4 + 5 ∗ x3 + 6 ∗ x2 + 6 ∗ x+ 4
subgroup Z/2Z + Z/2Z + Z/2Z + Z/432Z

X.1 = C0.1, X.2 = C0.2, X.3 = 2 ∗ C0.3, X.4 = 8 ∗ C0.4
o (1/x, 1/x5 ∗ y)
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6.2 Ramified algorithm

For the unramified algorithm, the big obstacle was that we had to run our relatively fast
algorithm over an extremely large set of polynomials. For the ramified algorithm, the set
of polynomials stays a lot smaller, since we consider only degree 5 or 6 polynomials as we
are looking at genus 2 function fields (which are always hyperelliptic), but the algorithm
itself takes a lot more time per polynomial. The reason behind this is the fact that for
each polynomial, a set of divisors is formed and the algorithm has to be executed for each
of those divisors. Therefore it is necessary to run this algorithm on multiple cores, since
otherwise the running time becomes unreasonably large. As we only store at most 50 results
per polynomial, and in practice only about 10 results per polynomial, this does not take up
too much memory.

In the algorithm below we first create a set of polynomials to run the algorithm over. We
then define a function that has as input a polynomial of degree 5 over F13, and as output a
list that consists of tuples with the genus, the number of rational places and the necessary
information to verify that outcome for each integer 2 ≤ i ≤ 50 such that Results[i] is
non-zero. Once that function is defined, we can run it on a number of cores. In this case,
it could be run on a computer with 20 cores. The i-th core took as input the polynomials
that were on an entry that was equivalent to i mod 20. The algorithms took several days
to run, with over 1 day for F7 and about 10 days for F13.

k:=GF(13);

R<x> := PolynomialRing(k);

P<y> := PolynomialRing(R);

lijst5:=[ [1,b,c,d,e,f]: b in k, c in k, d in k, e in k, f in k];

poli5 :=[];

for i in [1..#lijst5] do

f:= (x^5+lijst5[i][2]*x^4+lijst5[i][3]*x^3+lijst5[i][4]*x^2+

lijst5[i][5]*x+lijst5[i][6]);

if IsSeparable(f) then

Append(~poli5, f);

end if;

end for;

polmanyplaces213 :=[* *];

for i in [1..#poli5] do

k:=GF(13);

R<x> := PolynomialRing(k);

P<y> := PolynomialRing(R);

L<y> := FunctionField(y^2-poli5[i]);

if #Places(L,1) gt 17 then

Append(~polmanyplaces213, poli5[i]);

end if;

end for;

k:=GF(13);

R<x> := PolynomialRing(k);
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P<y> := PolynomialRing(R);

L<y> := FunctionField(polmanyplaces213[1]);

pl:=Places(L,1);

C, f, g:=ClassGroup(L);

l:=Ngens(C);

G:=Generators(C);

GG:=Exclude(G, C.l);

C0:= sub< C | GG>;

CC:=Subgroups(C0);

S:= CC[2]‘subgroup;

m:=<polmanyplaces213[1], 1* pl[3], S, pl[3]>;

% We again create the tuple m to construct "set" with, so that the elements

of the tuple are of the right type.

% Below, we create the list "D23" that consists of all divisors of

the form 1*pl, for some degree 2 or 3 place pl.

ramalgfct:=function(b);

k:=GF(13);

R<x> := PolynomialRing(k);

P<y> := PolynomialRing(R);

L := FunctionField(b);

pl1:= Places(L,1);

pl2:=Places(L,2);

pl3:=Places(L,3);

pl23:= pl2 cat pl3;

D23:=[];

for i in [1..#pl23] do

D:= 1*pl23[i];

Append(~D23, D);

end for;

Results:= [1..150];

for i in [1..150] do

Results[i]:= 0;

end for;

set:=[* *];

for i in [1..150] do

Append(~set, m);

end for;

for k in [1..#D23] do

Div:=D23[k];

C, f:=RayClassGroup(Div);

g:= Inverse(f);

l:= Ngens(C);

G:= Generators(C);

GG:= Exclude(G, C.l);

C0:= sub< C | GG>;

CC:=Subgroups(C0);
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Z:= sub<C | C.l>;

for i in [1..#CC] do

Ci:=CC[i]‘subgroup;

T:= Index(C0, Ci);

if T lt 50 then

for j in [1..#pl1] do

kk:=0;

for a in [1..#pl1] do

D0:=g(pl1[a]-pl1[j]);

if D0 in Ci then

kk:=kk+1;

end if;

end for;

l:= kk*T;

A:=AbelianExtension(Div, Ci +Z);

x:= Genus(A);

if Results[x] lt l then

Results[x]:= l;

set[x]:= <b, Div, Ci, pl1[j]>;

end if;

end for;

end if;

end for;

end for;

final:=[];

for i in [1..50] do

if Results[i] gt 0 then

Append(~final, <i, Results[i], set[i]>);

end if;

end for;

return final;

end function;

We will state the necessary information to verify all results from Table 5.4. Note that in
most cases, the place that splits completely is still the infinite place, but there are also some
cases where a different place leads to a record. See the records over F11 for genus 7, 21 and 23.

F7 g = 8, N = 36
polynomial y2 + 6 ∗ x5 + 3 ∗ x4 + 6 ∗ x3 + 6 ∗ x2 + 5 ∗ x+ 6
divisor 1 ∗ (x+ 6)
subgroup Z/216Z X.1 = 2 ∗ C0.1 + 109 ∗ C0.2
o (1/x, 1/x3 ∗ y)

F7 g = 15, N = 56
polynomial y2 + 6 ∗ x5 + 3 ∗ x4 + 3 ∗ x3 + 4 ∗ x2 + 5 ∗ x+ 6
divisor 1 ∗ (x+ 5)
subgroup Z/108Z X.1 = C0.1 + 220 ∗ C0.2
o (1/x, 1/x3 ∗ y)
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F7 g = 16, N = 56
polynomial y2 + 6 ∗ x5 + 3 ∗ x4 + 5 ∗ x3 + 5 ∗ x2 + 6
divisor 1 ∗ (x+ 4)
subgroup Z/108Z X.1 = 7 ∗ C0.1 + 85 ∗ C0.2
o (1/x, 1/x3 ∗ y)

F7 g = 29, N = 80
polynomial y2 + 6 ∗ x5 + 2 ∗ x4 + 3 ∗ x3 + 4 ∗ x2 + 6 ∗ x
divisor 1 ∗ (x+ 2)
subgroup Z/2Z + Z/2Z + Z/10Z X.1 = C0.1, X.2 = C0.2, X.3 = 16 ∗ C0.3
o (1/x, 1/x3 ∗ y)

F7 g = 36, N = 100
polynomial y2 + 6 ∗ x5 + 4 ∗ x4 + 6 ∗ x3 + 1 ∗ x2 + 3
divisor 1 ∗ (x+ 3)
subgroup Z/42Z
o (1/x, 1/x3 ∗ y)

F7 g = 50, N = 112
polynomial y2 + 6 ∗ x5 + 5 ∗ x4 + 2 ∗ x3 + 2 ∗ x2 + 4 ∗ x
divisor 1 ∗ (x+ 4)
subgroup Z/2Z + Z/10Z X.1 = C0.1, X.2 = 18 ∗ C0.2
o (1/x, 1/x3 ∗ y)

F11 g = 7, N = 48
polynomial y2 + 10 ∗ x5 + 9 ∗ x4 + 1 ∗ x3 + 9 ∗ x2 + 10 ∗ x
divisor 1 ∗ (x2 + 10 ∗ x+ 1, y)
subgroup Z/4Z + Z/8Z + Z/24Z, X.1 = C0.2, X.2 = C0.1 + C.03,

X.3=C.01+2*C.04
o (x+ 7, y + 1)

F11 g = 13, N = 64
polynomial y2 + 10 ∗ x5 + 2 ∗ x4 + 8 ∗ x3 + 10 ∗ x
divisor 1 ∗ (x+ 5)
subgroup Z/2Z + Z/2Z + Z/2Z + Z/30Z
o (1/x, 1/x3 ∗ y)

F11 g = 21, N = 84
polynomial y2 + 10 ∗ x5 + 6 ∗ x4 + 9 ∗ x3 + 10 ∗ x
divisor 1 ∗ (x2 + x+ 6, y + 5 ∗ x+ 9)
subgroup Z/216Z, X.1 = C0.1 + 292 ∗ C0.2
o (x+ 7, y + 4)

F11 g = 22, N = 96
polynomial y2 + 10 ∗ x5 + 6 ∗ x4 + 7 ∗ x3 + 10 ∗ x
divisor 1 ∗ (x+ 3)
subgroup Z/2Z + Z/2Z + Z/36Z, X.1 = C0.2, X.2 = C0.1 + 22 ∗ C0.2,

X.3=C0.3 + 105*C0.4
o (1/x, 1/x3 ∗ y)
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F11 g = 23, N = 96
polynomial y2 + 10 ∗ x5 + 1 ∗ x4 + 8 ∗ x3 + 4 ∗ x2 + 10 ∗ x
divisor 1 ∗ (x+ 6)
subgroup Z/2Z + Z/2Z + Z/48Z, X.1 = C0.2 + 3 ∗ C0.3, X.2 = C0.1, X.3 = 2 ∗ C0.4
o (x+ 7, y + 3)

F11 g = 24, N = 96
polynomial y2 + 10 ∗ x5 + 5 ∗ x4 + 10 ∗ x3 + 10 ∗ x
divisor 1 ∗ (x+ 9)
subgroup Z/2Z + Z/2Z + Z/38Z, X.1 = C0.2, X.2 = C0.1, X.3 = C0.3 + 6 ∗ C0.4
o (1/x, 1/x3 ∗ y)

F11 g = 26, N = 105
polynomial y2 + 10 ∗ x5 + 9 ∗ x4 + 9 ∗ x3 + 10 ∗ x
divisor 1 ∗ (x+ 7)
subgroup Z/2Z + Z/2Z + Z/32Z, X.1 = C0.2, X.2 = C0.1, X.3 = 15 ∗ C0.3
o (1/x, 1/x3 ∗ y)

F11 g = 29, N = 112
polynomial y2 + 10 ∗ x5 + 6 ∗ x4 + 7 ∗ x3 + 10 ∗ x
divisor 1 ∗ (x+ 1)
subgroup Z/2Z + Z/54Z, X.1 = C0.1, X.2 = C0.3 + 4 ∗ C0.4
o (1/x, 1/x3 ∗ y)

F11 g = 31, N = 120
polynomial y2 + 10 ∗ x5 + 1 ∗ x4 + 2 ∗ x3 + 7 ∗ x2 + 10 ∗ x
divisor 1 ∗ (x2 + 7 ∗ x+ 9, y + 2 ∗ x+ 8)
subgroup Z/132Z, X.1 = 10 ∗ C0.2
o (1/x, 1/x3 ∗ y)

F11 g = 34, N = 132
polynomial y2 + 10 ∗ x5 + 4 ∗ x4 + 3 ∗ x3 + 8 ∗ x2 + 10 ∗ x
divisor 1 ∗ (x+ 9)
subgroup Z/2Z + Z/2Z + Z/2Z + Z/2Z + Z/6Z
o (1/x, 1/x3 ∗ y)

F11 g = 41, N = 144
polynomial y2 + 10 ∗ x5 + 9 ∗ x4 + 5 ∗ x3 + 9 ∗ x2 + 10 ∗ x
divisor 1 ∗ (x+ 6)
subgroup Z/2Z + Z/48Z, X.1 = 3 ∗ C0.2 + 96 ∗ C0.3, X.2 = C0.1 + 5 ∗ C0.2 + 12 ∗ C0.3
o (1/x, 1/x3 ∗ y)

F11 g = 43, N = 144
polynomial y2 + 10 ∗ x5 + 6 ∗ x4 + 7 ∗ x3 + 10 ∗ x
divisor 1 ∗ (x+ 3)
subgroup Z/2Z + Z/2Z + Z/18Z, X.1 = C0.2 + 96 ∗ C0.3, X.2 = 2 ∗ C0.3,

X.3=C0.1 + 12*C0.4
o (1/x, 1/x3 ∗ y)
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F11 g = 47, N = 168
polynomial y2 + 10 ∗ x5 + 5 ∗ x4 + 8 ∗ x3 + 2 ∗ x2 + 10 ∗ x
divisor 1 ∗ (x+ 2)
subgroup Z/2Z + Z/36Z, X.1 = C0.1, X.2 = 9 ∗ C0.2 + 2 ∗ C0.3
o (1/x, 1/x3 ∗ y)

F13 g = 14, N = 77
polynomial y2 + 12 ∗ x5 + 6 ∗ x4 + 11 ∗ x3 + 9 ∗ x2 + 11 ∗ x+ 12
divisor 1 ∗ (x+ 1)
subgroup Z/602Z, X.1 = 5 ∗ C0.1 + 431 ∗ C0.2
o (1/x, 1/x3 ∗ y)

F13 g = 19, N = 96
polynomial y2 + 12 ∗ x5 + 12 ∗ x4 + 2 ∗ x3 + 2 ∗ x2 + 12 ∗ x
divisor 1 ∗ (x+ 9)
subgroup Z/2Z + Z/2Z + Z/70Z, X.1 = C0.2, X.2 = C0.1, X.3 = C0.3 + 6 ∗ C0.4
o (1/x, 1/x3 ∗ y)

F13 g = 27, N = 126
polynomial y2 + 12 ∗ x5 + 12 ∗ x4 + 7 ∗ x3 + 10 ∗ x2 + 12 ∗ x
divisor 1 ∗ (x+ 5)
subgroup Z/2Z + Z/4Z + Z/32Z, X.1 = C0.1, X.2 = C0.2, X.3 = 14 ∗ C0.3
o (1/x, 1/x3 ∗ y)

F13 g = 28, N = 126
polynomial y2 + 12 ∗ x5 + 3 ∗ x4 + 9 ∗ x3 + 5 ∗ x2 + 12x
divisor 1 ∗ (x+ 4)
subgroup Z/253Z
o (1/x, 1/x3 ∗ y)

F13 g = 27, N = 126
polynomial y2 + 12 ∗ x5 + 3 ∗ x4 + 9 ∗ x3 + 5 ∗ x2 + 0 ∗ x+ 12x
divisor 1 ∗ (x+ 4)
subgroup Z/253Z
o (1/x, 1/x3 ∗ y)

F13 g = 40, N = 168
polynomial y2 + 12 ∗ x5 + 12 ∗ x4 + 12 ∗ x3 + 2 ∗ x2 + 5 ∗ x
divisor 1 ∗ (x+ 7)
subgroup Z/2Z + Z/70Z, X.1 = 7C0.1 + 105 ∗ C0.2, X.2 = 12 ∗ C0.1 + 183 ∗ C0.2
o (1/x, 1/x3 ∗ y)

F13 g = 46, N = 180
polynomial y2 + 12 ∗ x5 + 12 ∗ x4 + 4 ∗ x3 + 3 ∗ x2 + 11 ∗ x
divisor 1 ∗ (x2 + 10 ∗ x+ 4, y + 4 ∗ x+ 1)
subgroup Z/2Z + Z/2Z + Z/2Z + Z/14Z,

X.1 = C0.2, X.2 = C0.1, X.3 = C0.3 + C0.4, X.4 = C0.3 + 15 ∗ C0.5
o (1/x, 1/x3 ∗ y)



106 REFERENCES

References

[AT68] Emil Artin and John Torrence Tate. Class field theory. Vol. 366. AMS Chelsea
Publishing. American Mathematical Soc., 1968.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma algebra sys-
tem I: The user language”. In: Journal of Symbolic Computation 24.3-4 (1997),
pp. 235–265.

[Bro12] Kenneth S Brown. Cohomology of groups. Vol. 87. Graduate Texts in Mathemat-
ics. Springer Science & Business Media, 2012.

[CF10] John William Scott Cassels and Albrecht Fröhlich. Algebraic number theory. Lon-
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puter search for finding new curves with many points among fibre products of
two Kummer covers over F 5 and F 7”. In: Turkish Journal of Mathematics 37.6
(2013), pp. 908–913.

[Rök12] Karl Rökaeus. “Computer search for curves with many points among abelian cov-
ers of genus 2 curves”. In: Arithmetic, geometry, cryptography and coding theory.
Vol. 574. Contemp. Math. Amer. Math. Soc., Providence, RI, 2012, pp. 145–150.

[Rök13] Karl Rökaeus. “New curves with many points over small finite fields”. In: Finite
Fields and Their Applications 21 (2013), pp. 58–66.

[Ros02] Michael Rosen. Number theory in function fields. Vol. 210. Graduate Texts in
Mathematics. Springer Science & Business Media, 2002.

[Ros73] Michael Rosen. “S-units and S-class group in algebraic function fields”. In: Jour-
nal of Algebra 26.1 (1973), pp. 98–108.

[Ros87] Michael Rosen. “The Hilbert class field in function fields”. In: Exposition. Math.
Vol. 5. 4. 1987, pp. 365–378.

[Ser13] Jean-Pierre Serre. Local fields. Vol. 67. Graduate Texts in Mathematics. Springer
Science & Business Media, 2013.



REFERENCES 107

[Ser20] Jean-Pierre Serre. Rational points on curves over finite fields. Société Mathema-
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