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Abstract. We find that the Fricke–Macbeath curve attains the Hasse–Weil–Serre bound
over some finite fields of order p or p3 for a prime p, and the Howe curves of genus 7 attain
the Hasse–Weil–Serre bound over some finite fields of order p2 or p3. We determine the
precise condition on the finite field over which they attain the Hasse–Weil–Serre bound.

Next, we study curves constructed by the normalisation of the fibre product of three
hyperelliptic curves. Among them, we focus on two types of curves of genera 9 and 11. In
particular, under certain assumptions, we are able to decompose the Jacobian of one type
of curves of genus 9 completely and to determine the precise condition on the finite field
over which they are maximal. Also, we are able to update several entries of genera 9 and
11 in manypoints.org.

1. Introduction

Let p be a prime, k be a field of characteristic p and Fq be a finite field with q elements
where q is a power of p. A curve C is a projective, absolutely irreducible, non-singular
algebraic curve defined over k. A curve C over Fq is said to be maximal if the number of its
rational points attains the Hasse–Weil upper bound

#C(Fq) ≤ q + 1 + 2g
√
q

where g is the genus of C. In 1983, Serre provided a non-trivial improvement of the Hasse–
Weil bound when q is not a square root in [28], namely

#C(Fq) ≤ q + 1 + gb2√qc
where b·c is the floor function. We refer to this bound as the Serre bound.

Curves attaining the Hasse–Weil or the Serre bound are interesting objects not only in
their own right but also for their applications in coding theory. Indeed, Goppa described
a way to use algebraic curves to construct linear error-correcting codes in [8], the so-called
algebraic geometric codes; see [30]. The existence of curves with many rational points with
respect to their genus guarantee efficient error-correcting codes. For this reason, maximal
curves and curves attaining the Serre bound have been widely investigated in the last years,
see for instance [4, 5, 7].

In 2003, we constructed curves by the fibre product of two Kummer curves, and find new
curves with many points; see [17]. Curves with many points which are constructed by fibre
products of Kummer curves are also studied in [9, 24, 25, 26]. In 2017, Howe constructed
curves of genus 5, 6 and 7 by the fibre product of curves of genus 1 or 2 in [12], and
found curves of genus 5, 6 and 7 with many points which updated the manypoints site [6].
Katsura and Takashima defined a generalised Howe curve in [16] by the fibre product of two
hyperelliptic curves. In [20], we found generalised Howe curves of genus 5 attaining the Serre
bound.

The paper are organised as follows. Section 2 and 3 are preparations. Section 2 provides
a necessary and sufficient condition for certain elliptic curves to attain the Serre bound over
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Fp, Fp2 or Fp3 . In Section 3, we decompose the Jacobian of a hyperelliptic curve of genus 2.
In Section 4 we study on the Fricke–Macbeath curve and the Howe curves of genus 7 in [12].
We obtain not only non-maximal curves attaining the Serre bound but also maximal curves.
These results inspired us to construct curves by the fibre product of three hyperelliptic
curves in Section 5. We decompose their Jacobian to seven hyperelliptic curves by Kani and
Rosen’s theorem. Also we determine their genera exactly by their degrees. The idea comes
from [12, 16, 17, 20]. Among them, we study on curves of genera 9 and 11. In Section 6, we
study on two types of curves of genus 9. We decompose the Jacobian of one type of curves
of genus 9 completely under certain assumptions and determine the precise condition on the
finite field over which they are maximal. In Section 7, we search on two types of curves of
genus 11. Furthermore, we discover new curves of genera 9 and 11 which are able to update
the manypoints site [6].

2. Elliptic curves attaining the Serre bound

Let E be an elliptic curve with Weierstrass equation

E : y2 = f(x),

where f(x) ∈ Fp[x] is a cubic polynomial with distinct roots. Set m = (p− 1)/2 throughout

this paper. Denote the coefficients of xm in f(x)m by A.

Theorem 2.1. (i) [18, Theorem 2] Let p ≥ 17. E attains the Serre bound over Fp if
and only if

A ≡ −b2√pc mod p.

(ii) [29, Section V.4] E is maximal over Fp2 if and only if

A ≡ 0 mod p.

(iii) [18, Theorem 4] For A ∈ Fp, set A as the integer such that A ≡ A mod p and
0 ≤ A < p. Let p ≥ 11. E over Fp3 attains the Serre bound if and only if

A3 − 3pA = −b2p√pc.

Next we introduce results of twisted Legendre elliptic curve. Let θ ∈ Fp\{0} and λ ∈
Fp\{0, 1}, and a twisted Legendre elliptic curve is defined by

E
(θ)
λ : y2 = θx(x− 1)(x− λ).

Let p ≥ 3. We define a polynomial

Hp(t) =
m∑
i=0

(
m

i

)2

ti

as in Chapter V.4, Theorem 4.1 of [29]. We recall the next theorem.

Theorem 2.2. [20, Theorem 6]

(i) A curve E
(θ)
λ over Fp2 is maximal if and only if

Hp(λ) ≡ 0 mod p.

Further, if E
(θ)
λ over Fp2 is maximal then p ≡ 3 mod 4.

(ii) Let p ≥ 11. Set h as the integer such that h ≡ (−θ)mHp(λ) mod p and 0 5 h < p.

Then a curve E
(θ)
λ over Fp3 attains the Serre bound if and only if

h3 − 3ph = −b2p√pc.
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Lemma 2.3. [20, Lemma 7] The number of rational points of E
(θ)
λ over Fq satisfies

#E
(θ)
λ (Fq) ≡ 0 mod 4.

3. The Jacobian decomposition of curves

First, we introduce the result of Kani and Rosen in [14].

Theorem 3.1. [14, Theorem B] Let C be a curve over k and G a finite subgroup of the
automorphism group Aut(C) such that G = H1 ∪ · · · ∪Hn, where the Hi’s are subgroups of
G such that Hi ∩Hj = {1G} for i 6= j. Then we have the isogeny relation:

J(C)n−1 × J(C/G)g ∼ J(C/H1)
h1 × · · · × J(C/Hn)hn

where g = |G| and hi = |Hi|.

The next corollaries follow immediately, which we will use several times later.

Corollary 3.2. [27, Section 3] Let C be a curve, σ1, σ2 ∈ Aut(C) where σ1 6= σ2, σ1σ2 =
σ2σ1, |σ1| = |σ2| = 2 Then we have the following isogeny relation:

J(C)× J(C/〈σ1, σ2〉)2 ∼ J(C/〈σ1〉)× J(C/〈σ2〉)× J(C/〈σ1σ2〉).

Corollary 3.3. Let C be a curve, σi ∈ Aut(C) where σi 6= σj, σiσj = σjσi, |σi| = |σiσj | =
|σiσjσk| = 2 for 1 ≤ i, j, k ≤ 3 where i, j, k are all different. Then we have the following
isogeny relation:

J(C)3 × J(C/〈σ1, σ2, σ3〉)4 ∼J(C/〈σ1〉)× J(C/〈σ2〉)× J(C/〈σ3〉)
×J(C/〈σ2σ3〉)× J(C/〈σ3σ1〉)× J(C/〈σ1σ2〉)
×J(C/〈σ1σ2σ3〉).

Proof. Let G = 〈σ1, σ2, σ3〉, H1 = 〈σ1〉, H2 = 〈σ2〉, H3 = 〈σ3〉, H4 = 〈σ2σ3〉, H5 = 〈σ3σ1〉,
H6 = 〈σ1σ2〉, H7 = 〈σ1σ2σ3〉. From Theorem 3.1, we have the next isogeny relation:

J(C)7−1 × J(C/〈σ1, σ2, σ3〉)8 ∼J(C/〈σ1〉)2 × J(C/〈σ2〉)2 × J(C/〈σ3〉)2

×J(C/〈σ2σ3〉)2 × J(C/〈σ3σ1〉)2 × J(C/〈σ1σ2〉)2

×J(C/〈σ1σ2σ3〉)2.
Hence, we can prove it. �

To completely decompose the Howe curves in Section 4 and the curves of type I of genus 9
in Section 6, we bring in the next theorem. The idea of the proof is similar to that of
Theorem 3.5.

Theorem 3.4. Let a curve of genus 2 be defined by

D : y2 = cx(x− b1)(x− b2)(x− b3)(x− b4)
with c, bi ∈ k\{0}, bi for 1 ≤ i ≤ 4 are all different and b2(b1 − b3) = b4(b1 − b2). Assume
that there exists a square root of b2(b2 − b3) in k∗.

Then the Jacobian of the curve D decomposes over k as

J(D) ∼ E+ × E−,
where we have the following defining equations:

s2 =
c b1(b1 − b3)
b1 − b2

t(t− 1)
(
t−

(b1 − b2)
(
b3 − 2b2 ± 2(b22 − b2b3)1/2

)
b1(b3 − b1)

)

for E+ and E− respectively.
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Proof. D is isomorphic to y2 = cb1x(x− 1)(x− b2/b1)(x− b3/b1)(x− b4/b1). Set λ = b2/b1,
µ = b3/b1, ν = b4/b1. We have that ν = λ(1 − µ)/(1 − λ) is equivalent to b2(b1 − b3) =
b4(b1 − b2). Hence D is isomorphic to

y2 = cb1x(x− 1)(x− λ)(x− µ)
(
x− λ(1− µ)

1− λ
)
.(1)

On Equation (1) the three maps

σ : (x, y) 7→
(λ(x− µ)

x− λ
,
λ3/2(λ− µ)3/2

(x− λ)3
),

ι : (x, y) 7→ (x,−y) and τ = σι define three automorphisms of D.
Let E+ and E− be the quotient curves D/〈σ〉 and D/〈τ〉 respectively. By setting

t = x+
λ(x− µ)

x− λ
, s = y

x− (λ∓ (λ2 − λµ)1/2)

(x− λ)2
,

we have the following defining equations for E+ and E−:

s2 = cb1(t− µ)
(
t− 1− λµ

1− λ
)(
t− 2(λ∓ (λ2 − λµ)1/2)

)
,

which are birationally equivalent to

s2 =
cb1(1− µ)

1− λ
t(t− 1)

(
t− (1− λ)(µ− 2λ± 2(λ2 − λµ)1/2)

µ− 1

)
.

Hence, we have that Jac(D) ∼ E+ × E− by Corollary 3.2. �

We recall one more theorem here.

Theorem 3.5. [13, Theorem 2] Let a hyperelliptic curve of genus 2 be defined by

D : y2 = c(x− b1)(x− b2)(x− b3)(x− b4)(x− b5)(x− b6)

with c ∈ k\{0}, bi ∈ k, bi for 1 ≤ i ≤ 6 are all different and

(b2 − b4)(b1 − b6)(b3 − b5) = (b2 − b6)(b1 − b5)(b3 − b4).

Set θ = c · (b2 − b3)(b1 − b4)(b1 − b5)(b1 − b6),

λ =
(b1 − b3)(b2 − b4)
(b2 − b3)(b1 − b4)

, µ =
(b1 − b3)(b2 − b5)
(b2 − b3)(b1 − b5)

.

Assume that there exists a square root of λ(λ− µ) in k∗.
Then the Jacobian of the curve D decomposes over k as

J(D) ∼ E+ × E−,

where we have the following defining equations:

s2 =
θ(1− µ)

1− λ
t(t− 1)

(
t−

(1− λ)
(
µ− 2λ± 2(λ2 − λµ)1/2

)
µ− 1

)
for E+ and E− respectively.
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4. Curves of genus 7 attaining the Serre bound

The Fricke–Macbeath curve F in [23] is a smooth projective curve of genus 7 with auto-
morphism group PSL2(F8). A plane model by Brock in [10] is

F : 1 + 7xy + 21x2y2 + 35x3y3 + 28x4y4 + 2x7 + 2y7 = 0.

It is isomorphic to the normalisation of the fibre product of three elliptic curves; see [1, 10,
12, 23] for the detail and its interesting property.

Top and Verschoor [31] determine its Jacobian decomposition and count its number of
rational points over a finite field Fq as Theorem 4.1. They also updated the manypoints site
[6]. The maximal Fricke–Macbeath curves are studied in [1].

Theorem 4.1 (Theorem 2.6 [31]). The Fricke–Macbeath curve F has good reduction modulo
every prime number p 6= 2, 7. Let the elliptic curve E defined by y2 = x3 + x2 − 114x− 127.
If q = pn is a positive power of such a prime p, then #F(Fq) = #E(Fq) if q 6≡ ±1 mod 7;
#F(Fq) = #E(Fq)− 6q − 6 if q ≡ ±1 mod 7.

We immediately have the next corollary.

Corollary 4.2. The curve F attains the Serre bound over Fq if and only if q ≡ ±1 mod 7
and E : y2 = x3 + x2 − 114x− 127 attains the Serre bound over Fq.

By Magma, we find E over Fp attaining the Serre bound with p ≡ ±1 mod 7. Hence we
have the next example. This is the first case of genus 7 over Fp attaining the Serre bound
as we know.

Example 4.3. The curve F attains the Serre bound over Fp for p =213813599, 427838767,
681220511, 683578601.

Also, we implement Algorithm 17 in [19] which is based on the theory of zeta function,
and find E over Fp3 attaining the Serre bound with p3 ≡ ±1 mod 7. Hence we have the next
example. We note that Example 20 of [19] are sextics over Fp3 of genus 7 attaining the Serre
bound.

Example 4.4. The curve F attains the Serre bound over Fp3 for p = 562493, 3214831,
14130029, 26183671 and so on.

Let A be the coefficient of xp−1 in a polynomial (x3 + x2 − 114x− 127)m. Then

A =
m∑
j=0

b p−1−2j
3
c∑

i=d p−1−2j
4
e

(
m

i

)
·
(
m− i
j

)
·
(

m− i− j
p− 1− 3i− 2j

)
(−114)p−1−3i−2j · (−127)2i+j−m

=

m∑
j=0

b p−1−2j
3
c∑

i=d p−1−2j
4
e

m!

i! · j! · (p− 1− 3i− 2j)! · (2i+ j −m)!
(−114)p−1−3i−2j · (−127)2i+j−m,

where d·e is the ceiling function.

Theorem 4.5. (i) Let p ≥ 17. The curve F attains the Serre bound over Fp if and only
if p ≡ ±1 mod 7 and

A ≡ −b2√pc mod p.

(ii) Let b ∈ Fp. The curve F is maximal over Fp2 if and only if p2 ≡ ±1 mod 7 and

A ≡ 0 mod p.
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(iii) Set A as the integer such that A ≡ A mod p and 0 ≤ A < p. Let p ≥ 11. The curve
F over Fp3 attains the Serre bound if and only if p3 ≡ ±1 mod 7 and

A3 − 3pA = −b2p√pc.

Proof. By Corollary 4.2 and Theorem 2.1 (i), (ii) and (iii), we are able to prove (i), (ii) and
(iii) respectively. �

Howe [12] construct a curve H of genus 7 by the normalisation of the fibre product of the
following three curves:

C1 : y21 = s1(x− 1)g1,

C2 : y22 = s2(x− 1)g2,

C3 : y23 = s x,

where g1 and g2 are monic quadratic polynomials that are coprime to one another and to
x− 1. The manypoints site [6] is updated by this curve.

Afterwards throughout this section, we set g1 = (x−a1)(x−a3), g2 = (x−a2)(x−a4), with
s, s1, s2 ∈ k\{0}, a1, a2, a3, a4 ∈ k\{0, 1} are all different. The Jacobian of H are decomposed
as follows:

J(H) ∼ E1 × · · · × E5 ×D(2)

where E1 : y2 = s1(x − 1)(x − a1)(x − a3), E2 : y2 = s2(x − 1)(x − a2)(x − a4), E3 : y2 =
ss2x(x− 1)(x−a2)(x−a4), E4 : y2 = ss1x(x− 1)(x−a1)(x−a3), E5 : y2 = s1s2(x−a1)(x−
a3)(x− a2)(x− a4), D : y2 = ss1s2x(x− a1)(x− a2)(x− a3)(x− a4) from [12].

We are able to decompose the Jacobian of H over k completely under certain conditions.

Theorem 4.6. Assume that a2(a1 − a3) = a4(a1 − a2) and there exists a square root of
a2(a2 − a3) in k∗. Then the Jacobian of the curve H has the following isogeny relation over
k:

J(H) ∼ E1 × · · · × E7

with the seven elliptic curves defined by

Ei : y
2 = θix(x− 1)(x− λi) for 1 ≤ i ≤ 7,

where

θ1 = s1(a1 − 1), λ1 =
a3 − 1

a1 − 1
,

θ2 = s2(a2 − 1), λ2 =
a4 − 1

a2 − 1
,

θ3 = −ss2a4(1− a2), λ3 =
a2(1− a4)
a4(1− a2)

,

θ4 = −ss1a3(1− a1), λ4 =
a1(1− a3)
a3(1− a1)

,

θ5 = −s1s2(a4 − a1)(a2 − a3), λ5 =
(a3 − a1)(a2 − a4)
(a2 − a3)(a4 − a1)

,

θ6 = θ7 =
ss1s2a1(a1 − a3)

a1 − a2
, λ6, λ7 =

(a1 − a2)
(
a3 − 2a2 ± 2(a22 − a2a3)1/2)
a1(a3 − a1)

.

In particular, if k = Fq then the number of rational points of H over Fq is given as

#H(Fq) =

7∑
i=1

#Ei(Fq)− 6(q + 1).
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Proof. From (2), we have that J(H) ∼ E1×· · ·×E5×D, where Ei are birational equivalent
to y2 = θix(x − 1)(x − λi) for 1 ≤ i ≤ 5. From Theorem 3.4, J(D) ∼ E6 × E7. Hence we
can prove it. �

We have the next theorem immediately.

Theorem 4.7. Suppose that s, s1, s2 ∈ Fp\{0}, a1, a2, a3, a4 ∈ Fp\{0, 1} are all different,
a2(a1 − a3) = a4(a1 − a2) and there exists a square root of a2(a2 − a3) in F∗p.

(i) The curve H over Fp2 is maximal if and only if the polynomial

Hp(λi) ≡ 0 mod p for 1 ≤ i ≤ 7,

where λi are defined as in Theorem 4.6. Further, if H over Fp2 is maximal then
p ≡ 3 mod 4.

(ii) Let p ≥ 11. Set hi as the integer such that hi ≡ (−θi)mHp(λi) mod p and 0 5 hi < p.
The curve H over Fp3 attains the Serre bound if and only if

h3i − 3phi = −b2p√pc for 1 ≤ i ≤ 7.

(iii) The number of rational points of H over Fq satisfies #H(Fq) ≡ 0 mod 4.

Proof. (i) From Theorem 2.2 (i) and Theorem 4.6, we can prove it.
(ii) From Theorem 2.2 (ii) and Theorem 4.6, we can prove it.

(iii) From Lemma 2.3 and Theorem 4.6, we can prove it.
�

Table 1 lists explicit values (p, s1, s2, a1, a2, a3, a4) satisfying the necessary and sufficient
conditions of Theorem 4.7 (i). They are maximal curves of genus 7 over Fp2 . In Example 4.8,
we shall explain the case of p = 23 in Table 1. The other cases in the table are similar.

Example 18 of [19] are maximal curves of genus 7. Their orders of automorphism groups
are 48 by direct checking with Magma. The orders of automorphism groups of curves in
Table 1 are 8. Hence they are not isomorphic.

Table 1. Maximal curves of genus 7 over Fp2

p s s1 s2 a1 a2 a3 a4
23 1 1 1 2 7 9 19
31 1 1 1 7 10 22 19
47 1 1 1 2 13 40 15
71 1 1 1 2 10 24 63
79 1 1 1 11 35 51 32
167 1 1 1 2 162 69 24
191 1 1 1 3 27 186 182
199 1 1 1 76 147 42 123

Example 4.8. The curveH defined by the normalisation of the fibre product C1×P1C2×P1C3

with the following three curves is a maximal curve of genus 7 over F232 .

C1 : y21 = (x− 1)(x− 2)(x− 9),

C2 : y22 = (x− 1)(x− 7)(x− 19),

C3 : y23 = x.

From Theorem 4.6, the Jacobian have the isogeny relation: J(H) ∼ E1 × · · · × E7, where
E1 : y2 = x(x− 1)(x− 8), E2 : y2 = 6x(x− 1)(x− 3), E3 : y2 = 22x(x− 1)(x− 12), E4 : y2 =
9x(x − 1)(x − 12), E5 : y2 = 11x(x − 1)(x − 16), E6 : y2 = 12x(x − 1)(x − 21), E7 : y2 =
12x(x− 1)(x− 22).
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Table 2 lists explicit values (p, s1, s2, a1, a2, a3, a4) satisfying the necessary and sufficient
conditions of Theorem 4.7 (ii). They are curves of genus 7 over Fp3 attaining the Serre
bound. We shall explain the case of p = 193 in Example 4.9.

Table 2. Curves of genus 7 attaining the Serre bound over Fp3

p s s1 s2 a1 a2 a3 a4
193 5 1 1 19 143 168 80
787 1 1 1 104 384 206 747

Example 4.9. The curveH defined by the normalisation of the fibre product C1×P1C2×P1C3

with the following three curves attains the Serre bound over F1933 . The genus is 7.

C1 : y21 = (x− 1)(x− 19)(x− 168),

C2 : y22 = (x− 1)(x− 143)(x− 80),

C3 : y23 = 5x.

From Theorem 4.6, the Jacobian have the isogeny relation: J(H) ∼ E1 × · · · × E7, where
E1 : y2 = 18x(x− 1)(x− 20), E2 : y2 = 142x(x− 1)(x− 59), E3 : y2 = 58x(x− 1)(x− 132),
E4 : y2 = 66x(x − 1)(x − 62), E5 : y2 = 174x(x − 1)(x − 169), E6 : y2 = 41x(x − 1)(x − 8),
E7 : y2 = 41x(x− 1)(x− 162).

5. Fibre products of three hyperelliptic curves

Let k be a field of characteristic p > 2. Let C1, C2 and C3 be hyperelliptic curves defined
by

C1 : y21 = s1f2(x)f5(x),

C2 : y22 = s2f1(x)f2(x)f3(x),

C3 : y23 = s3 f1(x)f4(x),

where s1, s2, s3 ∈ k\{0}. The polynomials are defined as the following:

f1(x) = (x− b1 1)× · · · × (x− b1 i1),

f2(x) = (x− b2 1)× · · · × (x− b2 i2),

f3(x) = (x− b3 1)× · · · × (x− b3 i3),

f4(x) = (x− b4 1)× · · · × (x− b4 i4),

f5(x) = (x− b5 1)× · · · × (x− b5 i5)

where bi ij ∈ k are all different with 0 ≤ i1, 1 ≤ i2, i3, i4 and 2 ≤ i5. If i1 = 0 then we set
f1(x) = 1. We note that the degree of the polynomial fj(x) is ij for 1 ≤ j ≤ 5.

Let ψ1 : C1 → P1, ψ2 : C2 → P1 and ψ3 : C3 → P1 be the hyperelliptic structures. Consider
the fibre product C1 ×P1 C2 ×P1 C3.

C1 ×P1 C2 ×P1 C3

ww �� ''
C1

ψ1

''

C2

ψ2
�� ��

C3

ψ3

wwP1
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Assume that there exists no isomorphism ϕ : C1 −→ C2 such that ψ2 ◦ϕ = ψ1, ϕ : C2 −→ C3

such that ψ3 ◦ ϕ = ψ2, ϕ : C3 −→ C1 such that ψ1 ◦ ϕ = ψ3. Denote by C the normalisation
of the fibre product C1 ×P1 C2 ×P1 C3.

We are able to decompose the Jacobian of the curve C.

Theorem 5.1. The Jacobian of the curve C decomposes over k as follows:
if i1 = 0 and i4 = 1 then

J(C) ∼ J(C1)× J(C2)× J(C4)× J(C5)× J(C6)× J(C7),

else

J(C) ∼ J(C1)× · · · × J(C7),

with

C4 : y24 = s1s2f1(x)f3(x)f5(x),

C5 : y25 = s1s3f1(x)f2(x)f4(x)f5(x),

C6 : y26 = s2s3f2(x)f3(x)f4(x),

C7 : y27 = s1s2s3f3(x)f4(x)f5(x).

Proof. The case of i1 = 0 and i4 = 1 is similar to the other cases. So we omit it here.
Assume i1 6= 0 or i4 6= 1. Three automorphisms of the curve C is given by

σ1 : (x, y1, y2, y3) 7→ (x,−y1, y2, y3),
σ2 : (x, y1, y2, y3) 7→ (x, y1,−y2, y3),
σ3 : (x, y1, y2, y3) 7→ (x, y1, y2,−y3).

The quotients C/〈σ1〉 is birational equivalent to the curve defined by the normalisation of
the fibre product of C2 ×P1 C3. From Corollary 3.2,

J(C2 ×P1 C3)× J((C2 ×P1 C3)/〈σ2, σ3〉)2

∼ J((C2 ×P1 C3)/〈σ2〉)× J((C2 ×P1 C3)/〈σ3〉)× J((C2 ×P1 C3)/〈σ2σ3〉).

Hence we have J(C/〈σ1〉) ∼ J(C2)×J(C3)×J(C6). Similarly we have J(C/〈σ2〉) ∼ J(C1)×
J(C3)× J(C5) and J(C/〈σ3〉) ∼ J(C1)× J(C2)× J(C4).

The quotients C/〈σ2σ3〉 is birational equivalent to the curve defined by the normalisation of
the fibre product C1 ×P1 C6. Let σ1 : (x, y1, y6) 7→ (x,−y1, y6), σ5 : (x, y1, y6) 7→ (x, y1,−y6).
From Corollary 3.2,

J(C1 ×P1 C6)× J((C1 ×P1 C6)/〈σ1, σ6〉)2

∼ J((C1 ×P1 C6)/〈σ1〉)× J((C1 ×P1 C6)/〈σ6〉)× J((C1 ×P1 C6)/〈σ1σ6〉).

Hence we have J(C/〈σ2σ3〉) ∼ J(C6) × J(C1) × J(C7). Similarly we have J(C/〈σ3σ1〉) ∼
J(C5)× J(C2)× J(C7) and J(C/〈σ1σ2〉) ∼ J(C4)× J(C3)× J(C7).

From Corollary 3.2,

J(C)× J(C/〈σ1σ2, σ3〉)2 ∼ J(C/〈σ1σ2〉)× J(C/〈σ3〉)× J(C/〈σ1σ2σ3〉),

which means that J(C)×J(C4)
2 ∼ J(C/〈σ1σ2〉)×J(C/〈σ3〉)×J(C/〈σ1σ2σ3〉). Similarly, we

have that J(C)×J(C6)
2 ∼ J(C/〈σ2σ3〉)×J(C/〈σ1〉)×J(C/〈σ1σ2σ3〉) and J(C)×J(C5)

2 ∼
J(C/〈σ1σ3〉)× J(C/〈σ2〉)× J(C/〈σ1σ2σ3〉).

According to the above results, we have that

J(C) ∼ J(C1)× J(C2)× J(C3)× J(C7)× J(C/〈σ1σ2σ3〉).
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Combining the above results and Corollary 3.3, we have that

J(C)3

∼ J(C1)
3 × J(C2)

3 × J(C3)
3 × J(C4)

2 × J(C5)
2 × J(C6)

2 × J(C7)
3 × J(C/〈σ1σ2σ3〉).

Therefor we can prove it. �

At this moment, we are able to exactly determine the genus of a curve C by the degrees
of polynomials fi(x) for 1 ≤ i ≤ 5.

Corollary 5.2. The genus of the cure C is given as

g(C) =b i2 + i5 − 1

2
c+ b i1 + i2 + i3 − 1

2
c+ b i1 + i4 − 1

2
c+ b i1 + i3 + i5 − 1

2
c

+ b i1 + i2 + i4 + i5 − 1

2
c+ b i2 + i3 + i4 − 1

2
c+ b i3 + i4 + i5 − 1

2
c.

Proof. Since the genera of curves Ci for 1 ≤ i ≤ 7 are determined as the following: g(C1) =
b(i2 + i5 − 1)/2c, g(C2) = b(i1 + i2 + i3 − 1)/2c, g(C3) = b(i1 + i4 − 1)/2c, g(C4) = b(i1 +
i3 + i5 − 1)/2c, g(C5) = b(i1 + i2 + i4 + i5 − 1)/2c, g(C6) = b(i2 + i3 + i4 − 1)/2c and
g(C7) = b(i3 + i4 + i5 − 1)/2c. Hence we have g(C) from Theorem 5.1 immediately. �

Corollary 5.3. If k = Fq then the number of rational points of the curve C over Fq are as
the following :

if i1 = 0 and i4 = 1 then

#C(Fq) =

7∑
j=1,j 6=3

#Cj(Fq)− 5(q + 1),

else

#C(Fq) =
7∑
j=1

#Cj(Fq)− 6(q + 1).

Proof. Since the case of i1 = 0 and i4 = 1 is similar to the other cases. So we omit it here.
Let i1 6= 0 or i4 6= 1. It is well known that #C(Fq) = q+ 1− t, where t is the trace of the

Frobenius endomorphism acting on a Tate module of J(C). Since J(C) ∼ J(C1)×· · ·×J(C7),
then the Tate module of J(C) is isomorphic to the direct sum of the Tate modules of
J(C1), . . . , J(C7). Hence t = t1 + · · · + t7, where t1, . . . , t7 are the traces of the Frobenius
on the Tate modules of J(C1), . . . , J(C7) respectively. The result follows by recalling that
ti = q + 1−#Ci(Fq) for 1 ≤ i ≤ 7. �

6. Curves of genus 9 with many points

We define curves of type I and II and study on them in this section.

Definition 6.1. We call a curve CI defined by the normalisation of the fibre product C1×P1

C2 ×P1 C3 with the following equations a curve of type I:

C1 : y21 = s1(x− 1)(x− a2)(x− a3),
C2 : y22 = s2(x− a1)(x− a2)(x− a3)(x− a4),
C3 : y23 = s3x(x− a1)(x− a5),

where s1, s2, s3 ∈ k\{0}, ai ∈ k\{0, 1} for 1 ≤ i ≤ 5 are all different.

From Theorem 5.1, Corollary 5.2 and 5.3, we have the next corollary immediately.
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Corollary 6.2. (i) The Jacobian of the curve of type I has the following isogeny rela-
tion:

J(CI) ∼ J(C1)× · · · × J(C7),

where C4 : y2 = s1s2(x − 1)(x − a1)(x − a4), C5 : y2 = s1s3x(x − 1)(x − a1)(x −
a2)(x − a3)(x − a5), C6 : y2 = s2s3x(x − a2)(x − a3)(x − a4)(x − a5), C7 : y2 =
s1s2s3x(x− 1)(x− a4)(x− a5).

(ii) The genus of a curve of type I is 9.

(iii) When k = Fq, we have #CI(Fq) =
∑7

j=1 #Cj(Fq)− 6(q + 1).

Table 3 lists explicit values (p, s1, s2, s3, a1, a2, a3, a4, a5,#CI(Fp)) which are able to update
the manypoints site [6]. We shall explain the case of p = 17 in Example 6.3. The other cases
are similar.

Table 3. Curves of type I of genus 9 with many points

q s1 s2 s3 a1 a2 a3 a4 a5 #CI(Fp) old entry new entry
17 1 1 1 4 12 16 3 15 72 64-83 72-83
29 1 2 1 8 18 24 19 4 104 100-120 104-120
37 1 1 1 5 17 35 29 30 120 116-142 120-142
43 1 1 1 2 25 27 14 7 132 128-155 132-155
47 1 1 1 4 21 25 20 38 144 132-162 144-162
53 1 1 1 2 33 44 11 51 152 148-176 152-176
59 1 1 1 14 38 58 4 43 164 160-189 164-189
61 1 1 1 20 55 58 3 29 172 168-193 172-193
67 2 1 2 5 59 66 19 47 184 180-206 184-206
71 1 1 7 22 39 50 26 27 200 192-213 200-213
73 1 5 1 17 26 56 27 35 200 184-218 200-218
79 1 1 1 6 16 54 14 37 208 200-230 208-230
97 1 5 1 4 60 79 69 95 244 228-266 244-266
113 1 2 1 2 5 10 4 3 1920 1812-1980 1920-1980
193 1 1 1 4 2 6 9 18 8120 8057-8345 8120-8345
135 1 1 1 3 11 12 2 9 382104 382096-382256 382104-382256
175 1 1 1 6 10 15 4 13 1439708 1438108-1441305 1439708-1441305

Example 6.3. The curve CI which is defined by the normalisation of the fibre product
C1 ×P1 C2 ×P1 C3 with

C1 : y21 = (x− 1)(x− 12)(x− 16),

C2 : y22 = (x− 4)(x− 12)(x− 16)(x− 3),

C3 : y23 = x(x− 4)(x− 15)

has 72 rational points over F17. The genus is 9. From Corollary 6.2 (i) its Jacobian has
the isogeny relation: J(CI) ∼ J(C1) × · · · × J(C7) where C4 : y2 = (x − 1)(x − 4)(x − 3),
C5 : y2 = x(x− 1)(x− 4)(x− 12)(x− 16)(x− 15), C6 : y2 = x(x− 12)(x− 16)(x− 3)(x− 15),
C7 : y2 = x(x− 1)(x− 3)(x− 15).

In this case the best known lower bound is 64, so we can give a new entry in [6].

We are able to completely decompose the Jacobian of a curve CI of type I under certain
conditions.
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Theorem 6.4. Assume that (1−a2)a5(a1−a3) = (1−a5)a3(a1−a2), a3(a2−a4) = a5(a2−a3),
there exists square roots of a3(1− a2)(a3 − a2) and a3(a3 − a4) in k∗. Then the Jacobian of
a curve CI of type I has the following isogeny relation:

J(CI) ∼ E1 × · · · × E9

where

Ei : y
2 = θix(x− 1)(x− λi)

with

θ1 = s1(a2 − 1), λ1 =
a3 − 1

a2 − 1
,

θ2 = s2(a1 − a4)(a2 − a3), λ2 =
(a1 − a3)(a2 − a4)
(a2 − a3)(a1 − a4)

,

θ3 = s3a1, λ3 =
a5
a1
,

θ4 = s1s2(a1 − 1), λ4 =
a4 − 1

a1 − 1
,

θ5 = θ6 =
γ(1− β)

1− α
, λ5, λ6 =

(1− α)
(
β − 2α± 2(α2 − αβ)1/2

)
β − 1

,

θ7 = θ8 =
s2s3a2(a2 − a4)

a2 − a3
, λ7, λ8 =

(a2 − a3)
(
a4 − 2a3 ± 2(a23 − a3a4)1/2

)
a2(a4 − a2)

,

θ9 = s1s2s3a5(a4 − 1), λ9 =
a4(1− a5)
a5(1− a4)

.

Here α = a1(1− a2)/(a2(1− a1)), β = a1(1− a3)/(a3(1− a1)), γ = s1s3a2a3a5(a1 − 1).
In particular, if k = Fq then the number of rational points of CI over Fq is given as

#CI(Fq) =

9∑
i=1

#Ei(Fq)− 8(q + 1).

Proof. We have the Jacobian decomposition J(CI) ∼ J(C1)×· · ·×J(C7) as Corollary 6.2 (i).
Ci is birational equivalent to Ei for 1 ≤ i ≤ 4. From Theorem 3.5, we have J(C5) ∼ E5×E6.
From Theorem 3.4, we have J(C6) ∼ E7×E8. At last, C7 is birational to E9. Hence we can
prove it. �

Theorem 6.5. Suppose that s1, s2, s3 ∈ Fp\{0}, ai ∈ Fp\{0, 1} for 1 ≤ i ≤ 5 are all different.
Assume that (1−a2)a5(a1−a3) = (1−a5)a3(a1−a2), a3(a2−a4) = a5(a2−a3), there exists
square roots of (1− a2)(a23 − a2a3) and a3(a3 − a4) in F∗p respectively.

(i) The curve CI of type I over Fp2 is maximal if and only if

Hp(λi) ≡ 0 mod p for 1 ≤ i ≤ 9.

Further, if CI over Fp2 is maximal then p ≡ 3 mod 4.
(ii) The number of rational points of CI over Fq satisfies #CI(Fq) ≡ 0 mod 4.

Proof. (i) By Theorem 2.2 (i) and Theorem 6.4.
(ii) By Lemma 2.3 and Theorem 6.4.

�

Table 4 lists explicit values (p, s1, s2, s3, a1, a2, a3, a4, a5) satisfying the necessary and suf-
ficient conditions of Theorem 6.5 (i). They are maximal curves of type I over Fp2 . We shall
explain the case of p = 47 in Example 6.6. The other cases in the table are similar.
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Table 4. Maximal curves of type I of genus 9 over Fp2

p s1 s2 s3 a1 a2 a3 a4 a5
47 1 1 1 30 5 29 19 13
71 1 1 1 25 9 6 20 49
191 1 1 1 34 163 30 67 115
239 1 1 1 200 121 120 40 160
311 1 1 1 28 152 305 57 83

Example 6.6. The curve defined by the normalisation of the fibre product C1×P1C2×P1C3

with

C1 : y21 = (x− 1)(x− 5)(x− 29),

C2 : y22 = (x− 30)(x− 5)(x− 29)(x− 19),

C3 : y23 = x(x− 30)(x− 13)

is a maximal curve of genus 9 over F472 . From Theorem 6.4, the Jacobian have the isogeny
relation: J(CI) ∼ E1×· · ·×E9, where E1 : y2 = 4x(x−1)(x−7), E2 : y2 = 18x(x−1)(x−41),
E3 : y2 = 30x(x − 1)(x − 2), E4 : y2 = 29x(x − 1)(x − 46), E5 : y2 = 16x(x − 1)(x − 39),
E6 : y2 = 16x(x − 1)(x − 46), E7 : y2 = 42x(x − 1)(x − 37), E8 : y2 = 42x(x − 1)(x − 28),
E9 : y2 = 46x(x− 1)(x− 7).

Next, we define one more type of curves.

Definition 6.7. We call a curve CII defined by the normalisation of the fibre product C1×P1

C2 ×P1 C3 with the following equations a curve of type II:

C1 : y21 = s1(x− 1)(x− a1)(x− a2)(x− a3),
C2 : y22 = s2(x− 1)(x− a1)(x− a4)(x− a5),
C3 : y23 = s3 x.

From Theorem 5.1, Corollary 5.2 and 5.3, we have the next corollary immediately.

Corollary 6.8. (i) The Jacobian of the curve of type II has the isogeny relation:

J(CII) ∼ J(C1)× J(C2)× J(C4)× J(C5)× J(C6)× J(C7),

where C4 : y2 = s1s2(x−a2)(x−a3)(x−a4)(x−a5), C5 : y2 = s1s3x(x−1)(x−a1)(x−
a2)(x − a3), C6 : y2 = s2s3x(x − 1)(x − a1)(x − a4)(x − a5), C7 : y2 = s1s2s3x(x −
a2)(x− a3)(x− a4)(x− a5).

(ii) The genus of a curve of type II is 9.

(iii) When k = Fq, we have #CII(Fq) =
∑7

j=1,j 6=3 #Cj(Fq)− 5(q + 1).

Table 5 lists explicit values (q, s1, s2, s3, a1, a2, a3, a4, a5,#CII(Fq)) which are able to update
the manypoints site [6]. In Example 6.9 below, we shall explain the case of p = 83 in the
table. The other cases are similar.

Table 5. Curves of type II of genus 9 with many points

q s1 s2 s3 a1 a2 a3 a4 a5 #CII(Fq) old entry new entry
83 1 2 1 2 37 44 51 67 216 208-238 216-238
89 3 3 3 31 45 47 51 68 224 216-249 224-249
174 1 1 1 5 9 11 14 13 88688 87272-88724 88688-88724
195 1 1 1 2 11 12 13 14 2500100 0000000-2504423 2500100-2504423
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Example 6.9. The curve CII which is defined by the normalisation of the fibre product of
C1 ×P1 C2 ×P1 C3 with

C1 : y21 = (x− 1)(x− 2)(x− 37)(x− 44),

C2 : y22 = 2(x− 1)(x− 2)(x− 51)(x− 67),

C3 : y23 = x

has 216 rational points over F83. The genus is 9. From Corollary 6.8(i) its Jacobian has
the isogeny relation: J(CII) ∼ J(C1) × J(C2) × J(C4) × J(C5) × J(C6) × J(C7) where
C4 : y2 = 2(x − 37)(x − 44)(x − 51)(x − 67), C5 : y2 = x(x − 1)(x − 2)(x − 37)(x − 44),
C6 : y2 = 2x(x− 1)(x− 2)(x− 51)(x− 67), C7 : y2 = 2x(x− 37)(x− 44)(x− 51)(x− 67).

In this case the best known lower bound is 208, so we can give a new entry in [6].

7. Curves of genus 11 with many points

We define curves of type III and type IV and study on them in this section.

Definition 7.1. We call a curve CIII defined by the normalisation of the fibre product C1×P1

C2 ×P1 C3 with the following equations a curve of type III:

C1 : y21 = s1(x− 1)(x− a2)(x− a3),
C2 : y22 = s2(x− a1)(x− a2)(x− a3)(x− a4)(x− a5),
C3 : y23 = s3 x(x− a1)(x− a4)(x− a6).

From Theorem 5.1, Corollary 5.2 and 5.3, we have the next corollary immediately.

Corollary 7.2. (i) The Jacobian of a curve of type III has the isogeny relation:

J(CIII) ∼ J(C1)× · · · × J(C7),

where C4 : y2 = s1s2(x − 1)(x − a1)(x − a4)(x − a5), C5 : y2 = s1s3x(x − 1)(x −
a1)(x− a2)(x− a3)(x− a4)(x− a6), C6 : y2 = s2s3x(x− a2)(x− a3)(x− a5)(x− a6),
C7 : y2 = s1s2s3x(x− 1)(x− a5)(x− a6).

(ii) The genus of a curve of type III is 11.

(iii) When k = Fq, we have #CIII(Fq) =
∑7

j=1 #Cj(Fq)− 6(q + 1).

Table 6 lists explicit values (q, s1, s2, s3, a1, a2, a3, a4, a5, a6,#CIII(Fq)) which are able to
update the manypoints site [6]. In Example 7.3 below, we shall explain the case of p = 41
in the table. The other cases in the table are similar.

Example 7.3. The curve CIII which is defined by the normalisation of the fibre product
C1 ×P1 C2 ×P1 C3 with

C1 : y21 = (x− 1)(x− 23)(x− 37),

C2 : y22 = 3(x− 16)(x− 23)(x− 37)(x− 10)(x− 14),

C3 : y23 = x(x− 16)(x− 10)(x− 39)

has 140 rational points over F41. Its genus is 11. From Corollary 7.2(i) its Jacobian has the
isogeny relation: J(CIII) ∼ J(C1)×· · ·×J(C7), where C4 : y2 = 3(x−1)(x−16)(x−10)(x−14),
C5 : y2 = x(x− 1)(x− 16)(x− 23)(x− 37)(x− 10)(x− 39), C6 : y2 = 3x(x− 23)(x− 37)(x−
14)(x− 39), C7 : y2 = 3x(x− 1)(x− 14)(x− 39).

In this case there are no lower bound, so we can give a new entry in [6].

Next, we define one more type of curves.
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Table 6. Curves of type III of genus 11 with many points

q s1 s2 s3 a1 a2 a3 a4 a5 a6 #CIII(Fq) old entry new entry
41 1 3 1 16 23 37 10 14 39 140 000-174 140-174
47 5 1 1 17 20 32 33 39 42 152 000-191 152-191
53 1 1 1 18 43 50 33 34 42 168 000-208 168-208
59 1 1 1 6 16 50 37 48 51 176 000-221 176-221
61 2 2 1 8 47 56 21 30 41 192 000-227 192-227
67 1 1 2 17 21 24 4 7 37 196 000-240 196-240
71 7 1 1 2 7 19 23 42 45 208 000-248 208-248
73 5 1 5 3 4 5 35 44 55 208 000-253 208-253
79 1 1 1 13 27 37 63 67 77 216 000-264 216-264
83 1 1 2 26 43 54 65 68 70 228 000-274 228-274
89 1 1 1 14 24 51 71 80 87 236 000-285 236-285
97 1 5 1 4 28 36 44 68 82 256 000-303 256-303
113 1 1 2 2 4 5 6 7 8 1920 0000-2124 1920-2124
135 1 2 2 2 3 4 5 10 11 384492 000000-384692 384492-384692

Definition 7.4. We call a curve CIV defined by the normalisation of the fibre product
C1 ×P1 C2 ×P1 C3 with the following equations a curve of type IV:

C1 : y21 = s1(x− 1)(x− a1)(x− a2)(x− a3)(x− a4),
C2 : y22 = s2(x− 1)(x− a1)(x− a2)(x− a5)(x− a6),
C3 : y23 = s3 x.

From Theorem 5.1, Corollary 5.2 and 5.3, we have the next corollary immediately.

Corollary 7.5. (i) The Jacobian of a curve of type IV has the isogeny relation:

J(CIV) ∼ J(C1)× J(C2)× J(C4)× J(C5)× J(C6)× J(C7),

where C4 : y2 = s1s2(x − a3)(x − a4)(x − a5)(x − a6), C5 : y2 = s1s3x(x − 1)(x −
a1)(x− a2)(x− a3)(x− a4), C6 : y2 = s2s3x(x− 1)(x− a1)(x− a2)(x− a5)(x− a6),
C7 : y2 = s1s2s3x(x− a3)(x− a4)(x− a5)(x− a6).

(ii) The genus of a curve of type IV is 11.

(iii) When k = Fq, we have #CIV(Fq) =
∑7

j=1,j 6=3 #Cj(Fq)− 5(q + 1).

Table 7 lists explicit values (q, s1, s2, s3, a1, a2, a3, a4, a5, a6,#CIV(Fq)) which are able to
update the manypoints site [6]. In Example 7.6, we shall explain the case of q = 192 in the
table. The other cases in the table are similar.

Table 7. Curves of type IV of genus 11 with many points

q s1 s2 s3 a1 a2 a3 a4 a5 a6 #CIV(Fq) old entry new entry
192 1 1 1 4 5 6 9 16 17 732 724-780 732-780
193 1 2 2 5 6 10 12 13 18 8448 0000-8675 8448-8675
174 1 1 1 4 5 6 7 11 15 89836 88580-89880 89836-89880
194 1 1 1 2 5 7 10 11 18 137036 136612-138264 137036-138264
175 1 1 3 2 4 5 8 9 11 1443208 1438748-1446071 1443208-1446071
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Example 7.6. The curve CIV which is defined by the normalisation of the fibre product
C1 ×P1 C2 ×P1 C3 with

C1 : y21 = (x− 1)(x− 4)(x− 5)(x− 6)(x− 9),

C2 : y22 = (x− 1)(x− 4)(x− 5)(x− 16)(x− 17),

C3 : y23 = x

has 732 rational points over F192 . Its genus is 11. From Corollary 7.5(i) its Jacobian has
the isogeny relation: J(CIV) ∼ J(C1) × J(C2) × J(C4) × J(C5) × J(C6) × J(C7), where
C4 : y2 = (x − 6)(x − 9)(x − 16)(x − 17), C5 : y2 = x(x − 1)(x − 4)(x − 5)(x − 6)(x − 9),
C6 : y2 = x(x− 1)(x− 4)(x− 5)(x− 16)(x− 17), C7 : y2 = x(x− 6)(x− 9)(x− 16)(x− 17).

In this case the best known lower bound is 724, so we can give a new entry in [6].
At last, we find a maximal curve of type IV of genus 11 over F472 .

Example 7.7. The curve CIV which is defined by the normalisation of the fibre product
C1 ×P1 C2 ×P1 C3 with

C1 : y21 = (x− 1)(x− 4)(x− 5)(x− 18)(x− 25),

C2 : y22 = (x− 1)(x− 4)(x− 5)(x− 27)(x− 34),

C3 : y23 = x

is a maximal curve of genus 11 over F472 . From Corollary 7.5(i) its Jacobian has the isogeny
relation: J(CIV) ∼ J(C1) × J(C2) × J(C4) × J(C5) × J(C6) × J(C7), where C4 : y2 = (x −
18)(x − 25)(x − 27)(x − 34), C5 : y2 = x(x − 1)(x − 4)(x − 5)(x − 18)(x − 25), C6 : y2 =
x(x− 1)(x− 4)(x− 5)(x− 27)(x− 34), C7 : y2 = x(x− 18)(x− 25)(x− 27)(x− 34).
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