Entry details for q = 21 = 2, g = 8
Table About Recent changes References
Username
Password
Log in Register

Lower bound Nmin = 11

Submitted by Gerrit Oomens
Date 01/01/1900
Reference Jean-Pierre Serre
Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini
C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397–402. (= Œuvres III, No. 128, 658–663).
Comments
Tags Methods from general class field theory

User comments

Defining equation     
Isabel Pirsic
06/18/2012 11:27
E.g.,

y4([8,4,0],[9,6,5,1,0],[9,8,6,5,4,1],[8,7,4,3])
=
(x^8+x^4+1)*y^4+
(x^9+x^6+x^5+x+1)*y^2+
(x^9+x^8+x^6+x^5+x^4+x)*y+
(x^8+x^7+x^4+x^3)
Upper bound Nmax = 11

Submitted by Everett Howe
Date 04/14/2010
Reference Jean-Pierre Serre
Rational points on curves over finite fields
Notes by Fernando Q. Gouvêa of lectures at Harvard University, 1985.
Comments
The Oesterlé bound. Here is a real Weil polynomial that we don't know how to eliminate: x^2 * (x + 2)^2 * (x^2 + x - 5) * (x^2 + 3*x + 1)
Tags Oesterlé bound

User comments

No comments have been made.