Submitted by |
Gerrit Oomens |
Date |
01-01-1900 |
Reference |
H. Niederreiter, C. P. Xing Cyclotomic function fields, Hilbert class fields and global function fields with many rational places Acta Arithm. 79 (1997), p. 59-76.
|
Comments
|
|
Tags |
Drinfeld modules of rank 1 |
User comments
reference corrected
|
Isabel Pirsic
06-15-2012 12:23
|
The above def. equation was actually from
B. Lopez, I. Luengo
Algebraic curves over F_3 with many rational points
In: Algebra, arithmetic and geometry with applications.
The def.Eq. for Example 3.7 in Niederreiter/Xing's paper is
y^8 +
(2*x^5 + x^4 + x^3 + x^2 + x + 2)*y^7 +
(x^7 + x^6 + x^5 + 2*x^4 + 2*x^3 + x^2 + x + 1)*y^6 +
(x^10 + x^8 + 2*x^3 + 2)*y^5 +
(x^14 + x^12 + x^10 + 2*x^8 + 2*x^7 + x^4 + 2*x^2 + 2*x + 1)*y^4 +
(2*x^15 + 2*x^14 + 2*x^12 + 2*x^11 + 2*x^8 + x^7 + x^6 + x^5 + 2*x^2 + 2*x + 2)*y^3 +
(x^14 + x^12 + x^11 + 2*x^8 + 2*x^3 + 1)*y^2 +
(2*x^11 + x^8 + 2*x^7 + x^5 + 2*x^3 + x^2 + x + 2)*y +
x^4 + x^3 + x^2 + x + 1
|
Defining equation
|
Isabel Pirsic
06-08-2012 18:01
|
2*x*y^5 +
(2*x^3 + x^2 + 2*x + 1)*y^4 +
(x^4 + x^3 + x + 2)*y^3 +
(2*x^4 + x)*y^2 +
(2*x^5 + x^4 + x^3 + 2*x^2 + 2*x)*y +
2*x^4 + x^3
|
|
Submitted by |
Everett Howe |
Date |
04-14-2010 |
Reference |
Kristin Lauter Zeta functions of curves over finite fields with many rational points pp. 167–174 in: Coding theory, cryptography and related areas (J. Buchmann, T. Høholdt, H. Stichtenoth, H. Tapia-Recillas, eds.), Springer, Berlin 1998
|
Comments
|
|
Tags |
None |
User comments
No comments have been made.
|