Entry details for q = 21 = 2, g = 7
Table About Recent changes References
Username
Password
Log in Register

Lower bound Nmin = 10

Submitted by Gerrit Oomens
Date 01-01-1900
Reference Jean-Pierre Serre
Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini
C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397–402. (= Œuvres III, No. 128, 658–663).
Comments
Tags Methods from general class field theory

User comments

Explicit Curve     
S.E.Fischer
11-27-2014 23:10
We can construct such a curve C as an deg2 extension of a curve C' of genus 2 as follows:

C': y^3 *( x^3 + x ) + y * (x^3 + x^2 + x) + 1
C/C': z^2 + z + x^3 + x

This information, appropriately provided for MAGMA, reads as:

> R<x> := FunctionField(GF(2));
> P<y> := PolynomialRing(R);
> S<z> := PolynomialRing(P);
FF := FunctionField( y^3 *( x^3 + x ) + y * (x^3 + x^2 + x) + 1 );
> FF;
F := ( ext < FF | z^2 + z + x^3 + x >);
F;
print "Genus =", Genus(F);
print "NoP =", #Places(F,1);
print Places(F,1);
Upper bound Nmax = 10

Submitted by Gerrit Oomens
Date 01-01-1900
Reference Jean-Pierre Serre
Rational points on curves over finite fields. With contributions by Everett Howe, Joseph Oesterlé and Christophe Ritzenthaler. Edited by Alp Bassa, Elisa Lorenzo García, Christophe Ritzenthaler and René Schoof
Documents Mathématiques 18, Société Mathématique de France, Paris, 2020
Comments
See the table at the beginning of the lecture notes, and the discussion on pages SeTh 38–40.
Tags None

User comments

No comments have been made.