Entry details for q = 54 = 625, g = 5
Table About Recent changes References
Username
Password
Log in Register

Lower bound Nmin = 871

Submitted by S.E.Fischer
Date 02-24-2017
Reference Not available
Comments
A corresponding equation is given by
x^4*y^4 + (x^3 + 1)*y^3 + x^2*y^2 + 2*x*y + x^3 = 0.
Tags Explicit curves

User comments

Same Isogeny Class for both examples     
S.E.Fischer
03-20-2018 21:03
Both examples represent the same isogeny class given by the Real Weil Polynomial (x+49)^5.
This can be seen, since they both allow Galois Descent to (x+1)^5 over GF(25), whereas the only other (not yet excluded) possibility (of an isogeny class) given by the Real Weil Polynomial (x+46)(x+49)(x+50)^3 doesn't show such a possibility.
A possibly different curve     
Everett Howe
06-27-2017 20:12
Matthieu Rambaud provides equations for a Shimura curve with 871 points (found in his draft paper "Shimura curves and multiplication"):

3*x^3*y^3 + 2*x^3*y + 4*x^3 + 4*x^2 + 2*x*y^3 + 3*x*y + 3*x + 2 = 0,
3*y^3*z^3 + 2*y^3*z + 4*y^3 + 4*y^2 + 2*y*z^3 + 3*y*z + 3*y + 2 = 0
Upper bound Nmax = 876

Submitted by Everett Howe
Date 04-14-2010
Reference Jean-Pierre Serre
Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini
C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397–402. (= Œuvres III, No. 128, 658–663).
Comments
The Hasse-Weil-Serre bound
Tags Hasse-Weil-Serre bound

User comments

No comments have been made.