Entry details for q = 112 = 121, g = 3
Table About Recent changes References
Username
Password
Log in Register

Lower bound Nmin = 188

Submitted by C. Ritzenthaler
Date 06-29-2009
Reference Jaap Top
Maximal quartics over F_p^2
Comments
Tags Explicit curves

User comments

A hyperelliptic example     
Everett Howe
06-17-2010 16:43
The cited reference gives as an example the plane quartic x^4 + y^4 + z^4 = 0. A paper of Kodama, Top, and Washio ("Maximal hyperelliptic curves of genus three", Finite Fields Appl. 15 (2009) 392–403) points out that the hyperelliptic curve y^2 = x^7 + x provides another example.
Upper bound Nmax = 188

Submitted by Everett Howe
Date 06-10-2010
Reference Jean-Pierre Serre
Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini
C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397–402. (= Œuvres III, No. 128, 658–663).
Comments
The Hasse-Weil-Serre bound
Tags Hasse-Weil-Serre bound

User comments

No comments have been made.