Submitted by |
Gerrit Oomens |
Date |
01-01-1900 |
Reference |
H. Niederreiter, C. P. Xing Cyclotomic function fields, Hilbert class fields and global function fields with many rational places Acta Arithm. 79 (1997), p. 59-76.
|
Comments
|
|
Tags |
Methods from general class field theory |
User comments
Defining equation
|
Isabel Pirsic
06-08-2012 17:10
|
y^22 + x^2*y^19 + (2*x^4 + 2*x)*y^17 + (x^6 + 2*x + 1)*y^16 + (2*x^5 + 2*x^2 + x)*y^15 + (x^5 + 2*x^3 +
x)*y^14 + (2*x^8 + 2*x^7 + x^6 + 2*x^5 + x^4 + x^3)*y^13 + (2*x^8 + 2*x^7 + x^5 + 2*x^4 + x^3 +
2*x^2)*y^12 + (x^10 + 2*x^9 + 2*x^7 + 2*x^6 + 2*x^5 + 2*x^3 + x)*y^11 + (x^12 + 2*x^10 + 2*x^9 + x^8 + x^7
+ 2*x^6 + x^5 + x^4 + x + 1)*y^10 + (x^10 + x^9 + 2*x^8 + x^7 + 2*x^6 + x^5 + x^4 + x^3 + x^2 + 2*x)*y^9 +
(2*x^12 + x^11 + x^10 + 2*x^9 + x^7 + x^5 + 2*x)*y^8 + (x^12 + 2*x^11 + x^10 + 2*x^9 + 2*x^8 + x^7 + 2*x^6
+ x^5 + 2*x^2)*y^7 + (x^13 + 2*x^12 + 2*x^11 + x^10 + 2*x^8 + 2*x^5 + 2*x^3 + x^2)*y^6 + (2*x^13 + 2*x^12
+ 2*x^11 + 2*x^7 + x^4)*y^5 + (2*x^15 + x^14 + x^13 + x^12 + 2*x^10 + x^9 + x^7 + 2*x^6 + 2*x^5 + x^4)*y^4
+ (x^14 + 2*x^12 + 2*x^10 + 2*x^9 + x^8 + x^7 + 2*x^6)*y^3 + (2*x^15 + 2*x^14 + x^13 + x^11 + x^10 + 2*x^9
+ x^8 + x^6)*y^2 + (x^14 + x^13 + 2*x^11 + x^10 + x^9 + x^8)*y + 2*x^15 + 2*x^14 + 2*x^13 + 2*x^11 + x^10
+ x^9
(reference as above, calculated with Magma)
|
|
User comments
No comments have been made.
|