Entry details for q = 21 = 2, g = 12
Table About Recent changes References
Username
Password
Log in Register

Lower bound Nmin = 14

Submitted by Gerrit Oomens
Date 01-01-1900
Reference Jean-Pierre Serre
Nombre de points des courbes algébriques sur F_q
Sém. de Théorie des Nombres de Bordeaux, 1982/83, exp. no. 22. (= Oeuvres III, No. 129, p. 664-668).
Comments
Tags Methods from general class field theory

User comments

Explicit equation     
Marc Masdeu
07-27-2021 08:56
Let L be the Carlitz extension over F2(t) attached to M = (t^3 + t + 1) * (t^3 + t^2 + 1). It has genus 78. The subfield of L fixed by H=<t> has genus 12, and sequence (d, a_d) of numbers of places

(1, 14), (2, 0), (3, 2), (4, 0), (5, 0), (6, 0), (7, 29), (8, 28), (9, 42), (10, 119), (11, 196), (12, 315), ...

A defining equation for the curve attached to the subfield cut out by H is

x^7 + (t^6 + t^5 + t^4 + t^3 + 1)*x^6 + (t^10 + t^9 + t^7 + t^6 + t^5 + t^2 + t)*x^5 + (t^13 + t^12 + t^10 + t^9 + t^7 + t^6 + t^5 + t^3 + t)*x^4 + (t^14 + t^13 + t^12 + t^10 + t^9)*x^3 + (t^12 + t^9 + t^7 + t^5 + t^4 + t^2 + t)*x^2 + (t^8 + t^7 + t^4 + t^2 + t)*x + 1,

and its Weil polynomial is

(x^6 + 4*x^5 + 9*x^4 + 15*x^3 + 18*x^2 + 16*x + 8)^2 * (x^12 + 3*x^11 + 7*x^10 + 15*x^9 + 31*x^8 + 49*x^7 + 71*x^6 + 98*x^5 + 124*x^4 + 120*x^3 + 112*x^2 + 96*x + 64).
Upper bound Nmax = 15

Submitted by Everett Howe
Date 04-14-2010
Reference Jean-Pierre Serre
Rational points on curves over finite fields. With contributions by Everett Howe, Joseph Oesterlé and Christophe Ritzenthaler. Edited by Alp Bassa, Elisa Lorenzo García, Christophe Ritzenthaler and René Schoof
Documents Mathématiques 18, Société Mathématique de France, Paris, 2020
Comments
The Oesterlé bound. Here is a real Weil polynomial that we don't know how to eliminate: (x + 1)^2 * (x + 2)^2 * (x^2 - 2) * (x^2 + 2*x - 2)^3
Tags Oesterlé bound

User comments

No comments have been made.