Submitted by |
Virgile Ducet |
Date |
05-21-2012 |
Reference |
V. Ducet, C. Fieker Computing Equations of Curves with Many Points pp. 317–334 in: ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Ser., 1, Math. Sci. Publ., Berkeley, CA, 2013
|
Comments
|
|
Tags |
Methods from general class field theory |
User comments
sparser defining equation
|
Isabel Pirsic
06-01-2012 12:40
|
Just wanted to note that y/x^2 has a slightly sparser minimal polynomial, 408 instead of 640 monomials (might be relevant for some applications):
y^16 + (x^10 + x^9 + x^7 + x^6 + x^2 + 1)*y^12 + (x^16 + x^15 + x^14 + x^10 + x^9 + x^2)*y^10 + (x^17 + x^16 + x^15 + x^13 + x^12 + x^11 + x^9 + x^5)*y^9 + (x^32 + x^27 + x^23 + x^22 + x^21 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 +x^12 + x^11 + x^9 + x^7 + x^6 + x^5 + x^4 + x^2)*y^8 + (x^28 + x^27 + x^26 +
x^20 + x^14 + x^13 + x^12 + x^6)*y^6 + (x^29 + x^28 + x^27 + x^21 + x^17 + x^16+ x^15 + x^9)*y^5 + (x^48 + x^47 + x^46 + x^45 + x^44 + x^43 + x^41 + x^35 + x^34 + x^32 + x^27 + x^25 + x^23 + x^21 + x^18 + x^17 + x^16 + x^14 + x^12 + x^10 + x^9 + x^7 + x^6 + x^4)*y^4 + (x^31 + x^30 + x^29 + x^22 + x^21 +
x^15)*y^3 + (x^54 + x^53 + x^49 + x^48 + x^47 + x^45 + x^44 + x^41 + x^40 + x^39 + x^36 + x^33 + x^30 + x^29 + x^27 + x^26 + x^25 + x^22 + x^21 + x^20 + x^17 + x^16 + x^12 + x^11 + x^10 +
x^47 + x^45 + x^44 + x^42 + x^41 + x^40 + x^39 + x^38 + x^35 + x^33 + x^32 + x^30 + x^29 + x^28 + x^27 + x^25 + x^24 + x^23 + x^20 + x^18 + x^16 + x^14 + x^12 + x^11 + x^9)*y + x^76 + x^65 + x^64 + x^63 + x^59 + x^58 + x^56 + x^55 + x^54 + x^51 + x^50 + x^49 + x^46 + x^44 + x^43 + x^40 + x^38 + x^37 + x^36 +
x^32 + x^31 + x^26 + x^23 + x^21 + x^20 + x^19 + x^18 + x^14
|
|
User comments
No comments have been made.
|