Entry details for q = 711 = 71, g = 4
Table About Recent changes References
Username
Password
Log in Register

Lower bound Nmin = 132

Submitted by Vijay
Date 04-16-2010
Reference Vijaykumar Singh, Gary McGuire
The Intersection of Two Fermat Hypersurfaces in P^3 via Computation of Quotient Curves
Comments
The curve of genus 4 defined by the intersection of two Fermat hyper-surfaces x^2+y^2+z^2+w^2=0 and x^3+y^3+z^3+w^3=0 over GF(71) has 132 rational points and hence has defect 4.
Tags Hasse-Weil-Serre bound

User comments

No comments have been made.

Upper bound Nmax = 136

Submitted by Everett Howe
Date 04-14-2010
Reference Jean-Pierre Serre
Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini
C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397–402. (= Œuvres III, No. 128, 658–663).
Comments
The Hasse-Weil-Serre bound
Tags Hasse-Weil-Serre bound

User comments

No comments have been made.