Entry details for q = 33 = 27, g = 27
Table About Recent changes References
Username
Password
Log in Register

Lower bound Nmin = 208

Submitted by Gerard van der Geer
Date 10-05-2009
Reference Not available
Comments
Message from Herivelto Borges (University of Texas):
---------------------------------
The curve is given by

x^10 + 2*x^9*y + 2*x^8*y^2 + 2*x^7*y^3 + x^6*y^4 + 2*x^5*y^5 + x^4*y^6 +
2*x^3*y^7 + 2*x^2*y^8 + 2*x*y^9 + y^10 + 2*x^9 + 2*x^7*y^2 + 2*x^2*y^7 +
2*y^9 + 2*x^8 + 2*x^7*y + 2*x^6*y^2 + 2*x^5*y^3 + x^4*y^4 + 2*x^3*y^5 +
2*x^2*y^6 + 2*x*y^7 + 2*y^8 + 2*x^7 + 2*x^5*y^2 + 2*x^2*y^5 + 2*y^7 + x^6
+ x^4*y^2 + x^2*y^4 + y^6 + 2*x^5 + 2*x^3*y^2 + 2*x^2*y^3 + 2*y^5 + x^4 +
2*x^2*y^2 + y^4 + 2*x^3 + 2*x^2*y + 2*x*y^2 + 2*y^3 + 2*x^2 + 2*y^2 + 2*x
+ 2*y + 1=0.

It has genus g=27 and N=208 F_{27}-rational points.

It came out from a work (still in progress) related to Frobenius
non-classical curves.
------------------------------------
Tags Explicit curves

User comments

No comments have been made.

Upper bound Nmax = 255

Submitted by Everett Howe
Date 04-14-2010
Reference Angelika Köhnlein
Obere Schranken für die Punktenzahl von Kurven über endlichen Körpern
Diplomarbeit, Technische Universität Darmstadt, 4 December 2003.
Comments
Tags None

User comments

No comments have been made.