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Abstract. In 1970’s Goppa discovered algebro-geometric codes, where we
need explicit curves with many rational points to construct good codes. Re-

cently we found that the sextics, defined by Wiman in 1895 and by Edge in
1980, attain the Hasse–Weil–Serre bound over some finite fields of order p, p2

or p3, for a prime number p. For some sextics among them, we determined the
precise condition on the finite field over which the sextics attain the Hasse–
Weil–Serre bound. In addition we update 19 entries of genus 6 and 11 entries
of genus 4 in manYPoints.org by computer search on these sextics.

1. Introduction

In 1970’s Goppa discovered algebro-geometric codes. We can construct good
codes by explicit curves with many rational points by his theory. For a curve C
over a finite field Fq of genus g, we have the Hasse–Weil bound

#C(Fq) ≤ q + 1 + 2g
√
q,

which is proved for elliptic curves by Hasse in 1933, and for all curves by Weil in
1941. Here we set p as a prime number and q as a power of p, Fq as a finite field with
q elements. By a curve we mean a projective geometrically irreducible nonsingular
algebraic curve.

After Goppa’s discovery, in 1983 Serre improved this bound in [13] as

#C(Fq) ≤ q + 1 + g⌊2√q⌋
where ⌊⌋ means round down. We call it Serre’s bound. A curve attains this bound
have a very simple L-function as (1 + ⌊2√q⌋T + qT 2)g.

A curve attaining the Hasse–Weil bound is called a maximal curve, and there
are many interesting research on it; see [3], [4] and their references. However we
do not know the property of a curve attaining Serre’s bound which is not maximal
when the genus ≥ 4. There are only a few examples of such curves; see [9], [10],
[11].

In Section 2, we introduce Wiman’s sextic from [17], where the geometry was
researched in [6]. We determine the condition on Fp and Fp3 over which it attains
Serre’s bound, where we do it on Fp2 in [10]. In Section 3, from [16] we introduce
a family of Wiman’s sextic. We determine the condition on Fp, Fp2 and Fp3 over
which it attains Serre’s bound when the coefficients of its defining equation are in
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Fp. We find 19 new curves of genus 6 with many rational points by computer search
which can update manYPoints in [5]. In Section 4, we find Wiman’s sextics of genus
4 attaining Serre’s bound, where we determine the condition on Fp, Fp2 and Fp3

over which it attains the bound when the coefficients of its defining equation are in
Fp. Also we find 11 new curves of genus 4 with many rational points. In Section 5,
we find that Edge’s sextics attain Serre’s bound over Fp2 and Fp3 for some p, where
we find it attains Serre’s bound over Fp in [10]. We also give a conjecture of the
condition on Fp2 over which it is maximal.

Acknowledgments. I would like to thank Nils Bruin for his comment on the
Jacobian decomposition of Edge’s sextic, Arnaldo Garcia and Takayuki Oda for
encouraging me to continue this research. This research was partially supported by
JST PRESTO program and JSPS Grant-in-Aid for Young Scientists (B) 25800090.

2. Wiman’s sextic I

In 1896 Wiman introduced the sextic

V : x6 + y6 + 1 + (x2 + y2 + 1)(x4 + y4 + 1)− 12x2y2 = 0

in [17]. We call it Wiman’s sextic and we find it attains Serre’s bound. Even the
result of Wiman’s sextic V is the special case of Wiman’s sextic W in Section 3,
however this section will show author’s spirit to readers.

As preparation, we discuss about the conditions for elliptic curves attaining
Serre’s bound. Afterward we consider the finite field Fp as Z/(p), which is the
residue classes of the integers modulo the ideal generated by a prime p. Let p > 2
and E be an elliptic curve with Weierstrass equation

E : y2 = f(x),

where f(x) ∈ Fp[x] is a cubic polynomial with distinct roots. Set

A = coefficient of xp−1 in f(x)(p−1)/2.

From Section V.4 of [14], we have the next proposition.

Proposition 1 ([14]). The number of rational points of E over Fp

#E(Fp) ≡ 1−A (mod p),

and E is supersingular if and only if

A ≡ 0 (mod p).

Note that Serre in [13] proved the lower bound #C(Fq) ≥ q + 1 − g⌊2√q⌋,
which we call Serre’s lower bound. We use it to prove our assertions afterwards.
Now, we start to introduce our results.

Theorem 2. Let p ≥ 17. E over Fp attains Serre’s bound if and only if

A ≡ −⌊2√p⌋ (mod p).

Proof. We start from the “if” part. By Proposition 1, #E(Fp) ≡ 1−A ≡ 1+
⌊2√p⌋ (mod p). Here p+1−⌊2√p⌋ ≤ #E(Fp) ≤ p+1+⌊2√p⌋ from Serre’s bounds.
Since p ≥ 17, we have 1 + ⌊2√p⌋ < p + 1 − ⌊2√p⌋. Hence #E(Fp) 6= 1 + ⌊2√p⌋,
which means #E(Fp) = p+ 1 + ⌊2√p⌋.

Next we prove the “only if” part. By the assumption, #E(Fp) = p+1+⌊2√p⌋.
Because #E(Fp) ≡ 1−A (mod p), we obtain that A ≡ −⌊2√p⌋ (mod p). �
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At this point we introduce an elementary lemma, where we require it to prove
the next theorem. Let R be a field of real numbers.

Lemma 3. Let p ≥ 11, and h(x) = −x3 + 3px be a polynomial in R[x]. Then

h(x) = ⌊2p√p⌋ has 3 roots in R. They are ω1, ω2 and ω3 with ω1 < −⌊2√p⌋ and
0 < ω2 <

√
p < ω3 <

√
p+ 0.3.

Proof. Write the graphs of y = h(x) and y = ⌊2p√p⌋ on a xy-plane. Since

h(−⌊2√p⌋) = ⌊2√p⌋3 − 3p⌊2√p⌋ < 4p⌊2√p⌋ − 3p⌊2√p⌋ = p⌊2√p⌋ < ⌊2p√p⌋, one
root of h(x) = ⌊2p√p⌋ is less than−⌊2√p⌋. Because (√p, 2p√p) is a local maximum
of y = h(x), there are two roots near

√
p. �

For A ∈ Fp, set A as the integer such that A ≡ A (mod p) and 0 ≤ A < p
throughout this article.

Theorem 4. Let p ≥ 11. With this notation, E over Fp3 attains Serre’s bound

if and only if

A3 − 3pA = −⌊2p√p⌋.
Proof. The Zeta function of the elliptic curve E over Fp is given by

Z(T ) =
(1 − αT )(1− βT )

(1− T )(1− pT )
.

Since #E(Fp) = p+ 1− α− β, we have that α+ β ≡ A (mod p) by Proposition 1.
By Serre’s bounds for E, we have that α + β should be either A − p, A or A + p.
Suppose α+ β = A+ p. Then #E(Fp) = 1− A ≤ 1 < p+ 1 − ⌊2√p⌋ since A ≥ 0,
which gives us a contradiction. So α+ β 6= A+ p.

Now we prove the “only if” part. #E(Fp3) = p3+1+⌊2p√p⌋ by the assumption.
Because #E(Fp3 ) = p3 + 1 − α3 − β3, we have that −α3 − β3 = ⌊2p√p⌋. Hence

αβ = p implies that −(α + β)3 + 3p(α + β) = ⌊2p√p⌋. Then α + β should be

a root of −x3 + 3px = ⌊2p√p⌋. Suppose that α + β = A − p. Since A < p,
we have α + β < 0. Thus α + β < −⌊2√p⌋ from the above lemma. It means that
#E(Fp) > p+1+⌊2√p⌋, which gives us a contradiction to Serre’s bound. Therefore

we have α+ β = A, which means that −A3 + 3pA = ⌊2p√p⌋.
Next we prove the “if” part. Suppose α + β = A − p. By the above lemma,

we know that A <
√
p + 0.3 when p ≥ 11, hence we have that α + β < −2√p.

Thus #E(Fp) = p + 1 − α − β > p + 1 + 2
√
p, which gives us a contradiction

to Serre’s bound. Therefore we have α + β = A, which means that #E(Fp3) =
p3 + 1−A3 + 3pA = p3 + 1 + ⌊2p√p⌋. �

Now we come back to Wiman’s sextic. Set p > 5 afterward in this section. We
introduce its Jacobian decomposition from [10]. Let JC be the Jacobian variety of
a curve C, and k be a field of characteristic p.

Proposition 5. [10] The Jacobian variety of Wiman’s sextic V over a field k
decomposes completely as

JV ∼ E6
0

where the elliptic curve is defined by E0 : y
2 = x(5x2 − 95x+ 29).

Similarly as Corollary 12, the following corollary is immediate.

Corollary 6. #V (Fq) = 6#E0(Fq)− 5q − 5.
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Set m = (p− 1)/2, and the coefficient of xm in (5x2− 95x+29)m by A0. From
[10] we know that

A0 =

⌊m
2
⌋

∑

i=0

m!

(i!)2(m− 2i)!
· 29i · 5m−i · (−19)m−2i.

Theorem 2 together with Corollary 6 gives the following result.

Theorem 7. Let p ≥ 17. Wiman’s sextic V over Fp attains Serre’s bound if

and only if

A0 ≡ −⌊2
√
p⌋ (mod p).

Note that 5393, 10019609, 11926193, 14162263, 22861687, etc satisfy the con-
dition of the theorem, where only the first one was introduced in [10] as a result of
computer search on Wiman’s sextic V .

The following theorem is obtained by Theorem 4 and Corollary 6.

Theorem 8. Let p ≥ 11. Wiman’s sextic V over Fp3 attains Serre’s bound if

and only if

A3
0 − 3pA0 = −⌊2p√p⌋.

Note that 67, 28909, 61487, 1721371, 6461821, 48052531, etc satisfy the con-
dition of the above theorem, where only the first one was introduced in [10] as a
result of computer search on Wiman’s sextic V .

3. Wiman’s sextic II

In 1895, Wiman in [16] defined the sextic

W : x6 + y6 + 1 + a(x4y2 + x2y4 + x4 + x2 + y4 + y2) + bx2y2 = 0.

When a = 1/2 and b = −6, it is isomorphic to Wiman’s sextic V in Section 2.
Remark that Theorem B of Kani and Rosen in [7] plays an important role when

we decompose a Jacobian variety of a curve in this article. We sometimes use the
next corollary which follows directly from Theorem B.

Corollary 9. [12] Let C be a curve, σ, τ ∈ Aut(C) where σ 6= τ , στ = τσ,
|σ| = |τ | = |στ | = 2. Then we have the isogeny relation

JC × J2
C/〈σ,τ〉 ∼ JC/〈σ〉 × JC/〈τ〉 × JC/〈στ〉.

Set p > 5 in this section.

Proposition 10. The Jacobian variety of Wiman’s sextic W over a field k
have the following isogeny relation

JW ∼ H3
1 ×H2 × J3

H3
,

where the curves are defined by

H1 : y
2 = ((3a− b− 3)x− a+ 3)(1 + (a− 3)x(1 − x)),

H2 : x
3 + y3 + 1 + a(x2y + xy2 + x2 + x+ y2 + y) + bxy = 0,

H3 : y
2 = −((a+ 1)x3 + (2a+ b)x2 + 4ax+ 4)(x3 + ax2 + ax+ 1).
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Proof. The automorphism group of the sextic W contains ι : (x, y) 7→ (−x, y)
and ρ : (x, y) 7→ (x,−y). From Corollary 9, we have the following isogeny relation

JW × J2
W/〈ι,ρ〉 ∼ JW/〈ι〉 × JW/〈ρ〉 × JW/〈ιρ〉,

while W/〈ι〉, W/〈ρ〉 and W/〈ιρ〉 are birational to

H : x3 + y6 + 1 + a(x2y2 + xy4 + x2 + x+ y4 + y2) + bxy2 = 0.

Here an explicit map W → H2 is given by (x, y) 7→ (x2, y2), hence W/〈ι, ρ〉 are
birational to H2. Therefore we have that JW ×H2

2 ∼ J3
H .

Since σ : (x, y) 7→ (x/y2, 1/y) and τ : (x, y) 7→ (x,−y) are automorphisms of H ,
from Corollary 9 we have that

JH × J2
H/〈σ,τ〉 ∼ JH/〈σ〉 × JH/〈τ〉 × JH/〈στ〉.

Now an explicit quotient map H → H/〈σ〉 is given by

(x, y) 7→ (x/y, y + 1/y),

where we have that

H/〈σ〉 : (1 − a)(x3 + y3 − 3y) + a(x+ y)(x2 + y2 − 2) + bx = 0.

An explicit quotient map H → H/〈στ〉 is given by

(x, y) 7→ (x+ x/y2, y − 1/y),

where we have that H/〈στ〉 is defined by

(1−a)(x3+(y2+1)(y2+4)2)+a(x+y2+4)(x2+(y2+2)(y2+4))+ bx(y2+4) = 0.

After transformation on their defining equations, we yield that H/〈σ〉 and
H/〈στ〉 are birational to H1 and H3 respectively. Since the genus of H/〈σ, τ〉
is 0 and H/〈τ〉 is isomorphic to H2, we have

JH ∼ H1 ×H2 × JH3
.

Thus we have the isogeny relation JW ×H2
2 ∼ H3

1 ×H3
2 × J3

H3
, and this proves the

assertion. �

Afterward, set b = −6a − 3 and a(a − 3)(a + 1)(2a + 3) 6= 0 throughout this
section. The following theorem is obtained directly.

Theorem 11. The Jacobian variety of Wiman’s sextic W over a field k has

the following isogeny relation

JW ∼ E3
1 × E3

2 ,

where the elliptic curves are defined by E1 : y
2 = xf1(x) and E2 : y

2 = xf2(x) with

f1(x) = x2 + (a− 3)(7a+ 6)x− (a− 3)(2a+ 3)3,

f2(x) = x2 − (a− 3)(a+ 2)x− (a− 3)(2a+ 3).

Proof. Since b = −6a − 3, the point (1, 1) on H2 is a singular point. Thus
the genus of H2 is 0. H1 and H3 in Proposition 10 are birational to E1 and E2

respectively. Hence we have JW ∼ E3
1 ×E3

2 . Moreover, E1 and E2 are nonsingular
when a(a− 3)(a+ 1)(2a+ 3) 6= 0. �

Remark that Wiman’s sextic V in Section 2 is a case when E1 and E2 are
isogenous.

Corollary 12. If b = −6a−3 then #W (Fq) = 3#E1(Fq)+3#E2(Fq)−5q−5.
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Proof. It is well known that #W (Fq) = q + 1 − t, where t is the trace of
Frobenius acting on a Tate module of JW . Theorem 11 implies that this Tate
module is isomorphic to a direct sum of three copies of the Tate module of E1 and
E2. Hence t = 3t1+3t2, where t1, t2 are the trace of Frobenius on the Tate module
of E1 and E2 respectively. Since t1 = q + 1−#E1(Fq) and t2 = q + 1−#E2(Fq),
the result follows. �

Note that the j-invariants of E1 and E2 are respectively

28(73a3 + 45a2 − 54a− 27)3

34a2(a+ 1)(2a+ 3)6
,

28(a3 + a2 − 2a− 3)3

a2(a+ 1)(2a+ 3)2
.

Denote the coefficients of xm in f1(x)
m and f2(x)

m by A1 and A2 respectively,
which means that

A1 =

⌊m
2
⌋

∑

i=0

m!

(i!)2(m− 2i)!
(−1)i(a− 3)m−i(7a+ 6)m−2i(2a+ 3)3i,

A2 =

⌊m
2
⌋

∑

i=0

m!

(i!)2(m− 2i)!
(−1)m−i(a− 3)m−i(a+ 2)m−2i(2a+ 3)i.

Theorem 13. Let p ≥ 17. Wiman’s sextic W over Fp attains Serre’s bound if

and only if

A1 ≡ A2 ≡ −⌊2
√
p⌋ (mod p).

Proof. Since we have the isogeny relation JW ∼ E3
1 ×E3

2 , Wiman’s sextic W
over Fp attains Serre’s bound if and only if both E1 and E2 do it by Corollary 12.
By Theorem 2 we can prove the condition for E1 and E2. �

Note that the pairs (p, a) satisfying these conditions are (503, 104), (1873, 1026),
(2069, 907), (2437, 1009), (5393, 2697), (6131, 2638), (7309, 4030), (8369, 6752), etc.

Next we determine the conditions of Wiman’s sextic to be maximal, which is
defined in the introduction.

Theorem 14. Let a ∈ Fp. Wiman’s sextic W is maximal over Fp2 if and only

if

A1 ≡ A2 ≡ 0 (mod p).

Proof. Wiman’s sextic W over Fp2 is maximal if and only if both E1 and E2

are maximal by Corollary 12. From Proposition 1, the elliptic curves E1 and E2

over Fp is supersingular if and only if the coefficients of xm in f1(x)
m and f2(x)

m

are zero. Hence we can prove it by the definitions of A1 and A2. �

Note that (p, a) satisfying these conditions are (11, 9), (17, 8), (19, 10), (23, 7),
(29, 5), (31, 4), (41, 15), (47, 34), (59, 34), (71, 7), (79, 1), (83, 30), etc.

Theorem 15. Let p ≥ 11 and a ∈ Fp. Wiman’s sextic W over Fp3 attains

Serre’s bound if and only if

A3
1 − 3pA1 = A3

2 − 3pA2 = −⌊2p√p⌋.

Proof. W over Fp3 attains Serre’s bound if and only if both elliptic curves E1

and E2 do it by Corollary 12. Theorem 4 gives the condition for E1 and E2. �
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Note that (p, a) satisfying these conditions are (67, 34), (97, 35), (101, 22),
(103, 100), (193, 101), (673, 340), (677, 40), (787, 98), (1153, 57), (1607, 467), etc.

Here, we find new curves of genus 6 by computer search on Wiman’s sextic W
using MAGMA computational algebra system. Table 1 is the results of W over Fp.
For example, when (a, b) = (34, 12), W over F73 has 170 rational points, where the
best known lower bound is 140 and the upper bound is 174 by manYPoints in [5].

Fp (a, b) #W (Fp) old entry
17 (1, 8) 54 – 60
29 (6, 19) 78 – 90
37 (35, 9) 86 80 – 104
41 (35, 33) 102 90 – 114
47 (18, 30) 120 90 – 126
59 (21, 48) 132 120 – 150
61 (38, 13) 134 110 – 152
73 (34, 12) 170 140 – 174
79 (57, 50) 176 170 – 182
89 (79, 57) 186 150 – 198

Table 1. W with many points over Fp

When b = −6a− 3, we implement Corollary 12 by MAGMA, where Table 2 is
our results. For example, W over F73 has 512 rational points when a = β81 where
β is a root of u3 + 6u2 + 4 = 0 in F73 and b = −6a− 3. Here the best known lower
bound is 500 and the upper bound is 564 in [5].

Fq a primitive poly. #W (Fq) old entry
72 4 110 – 134
112 9 254 230 – 254
73 β81 u3 + 6u2 + 4 512 500 – 564
113 β157 u3 + 2u+ 9 1716 1680 – 1764
133 β425 u3 + 2u+ 11 2714 2690 – 2756
115 β16525 u5 + 10u2 + 9 165756 165720 – 165864
135 2 378506 – 378602
175 β115551 u5 + u+ 14 1434006 – 1434156
195 β992900 u5 + 5u+ 17 2494688 – 2494982

Table 2. W with many points over Fq when b = −6a− 3

4. Wiman’s sextic of genus 4

We research on Wiman’s sextic W for a = −1, 3, where we exclude them in
Section 3. Set p > 3 in this section.

Theorem 16. Let a = −1 and b 6= −6,−2, 2, 3. The Jacobian variety of

Wiman’s sextic W over a field k have the following isogeny relation

JW ∼ E3 × E3
4 ,
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where the elliptic curves are defined by E3 : y
2 = xf3(x) and E4 : y

2 = xf4(x) with

f3(x) = x2 − 2(b+ 2)2(b+ 6)2(b2 − 12)x+ (b− 2)3(b + 2)4(b+ 6)5,

f4(x) = x2 + 2bx+ (b− 2)(b+ 6).

Proof. From Proposition 10, when a = −1, the Jacobian variety of Wiman’s
sextic W over a field k have the following isogeny relation

JW ∼ H2 ×H3
3 ,

where we have H2 : x
3 + y3 + 1 − (x2y + xy2 + x2 + x + y2 + y) + bxy = 0 and

H3 : y
2 = −((b − 2)x2 − 4x + 4)(x+ 1). Actually, H2 and H3 are birational to E3

and E4 respectively, and E3 and E4 are nonsingular when b 6= −6,−2, 2, 3. �

Similarly as Corollary 12, the following corollary is immediate.

Corollary 17. If a = −1 then #W (Fq) = #E3(Fq) + 3#E4(Fq)− 3q − 3.

Note that the j-invariants of E3 and E4 are respectively

− (b− 6)3(b3 + 6b2 + 12b− 120)3

(b− 2)6(b − 3)(b+ 6)2
, − 24(b − 6)6

(b− 2)2(b − 3)(b+ 6)2
.

Denote the coefficients of xm in f3(x)
m and f4(x)

m by A3 and A4 respectively,
which means that

A3 = (b + 2)2m
⌊m

2
⌋

∑

i=0

m!

(i!)2(m− 2i)!
(−2(b2 − 12))m−2i(b− 2)3i(b+ 6)2m+i,

A4 =

⌊m
2
⌋

∑

i=0

m!

(i!)2(m− 2i)!
(2b)m−2i(b− 2)i(b+ 6)i.

Theorem 18. Let a = −1 and b ∈ Fp\{−6,−2, 2, 3}. The following hold for

Wiman’s sextic W .

(i) Let p ≥ 17. W over Fp attains Serre’s bound if and only if

A3 ≡ A4 ≡ −⌊2
√
p⌋ (mod p).

(ii) W over Fp2 is maximal if and only if

A3 ≡ A4 ≡ 0 (mod p).

(iii) Let p ≥ 11. W over Fp3 attains Serre’s bound if and only if

A3
3 − 3pA3 = A3

4 − 3pA4 = −⌊2p√p⌋.
Proof. We can prove (i), (ii) and (iii) similarly as Theorem 13, 14 and 15

respectively. �

Note that the pairs (p, b) = (541, 6), (853, 6), (1237, 6), (1693, 6), (2221, 6),
(2857, 6), (3529, 6), (4273, 6), (7933, 6), (9311, 2982), etc satisfy the condition of
(i) in the above theorem. The pairs (p, b) = (5, 1), (11, 0), (17, 6), (23, 0), (29, 6),
(41, 6), (47, 0), (53, 6), (59, 0), (71, 0), (83, 0), etc satisfy the condition of (ii). The
pairs (p, b) = (61, 5), (67, 19), (193, 1), (199, 82), (397, 66), (673, 51), etc satisfy the
condition of (iii).

When a = −1 and b = 6, Wiman’s sextic W have an interesting relation with
the quotient curve of the Fermat curve in [9]. Let the elliptic curves E5 : y

2 = x3+1
and E6 : y

2 = x3 − 1 over a field k.
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Proposition 19. [9] Consider the curve C : y6 = x2(4− 4x2).

(i) The Jacobian variety of C over k have the following isogeny relation

JC ∼ E3
5 × E6.

(ii) The curve C over Fp attains Serre’s bound if and only if p ≡ 1 (mod 12),
⌊√p⌋ ≡ 2 (mod 3), ⌊2√p⌋ ≡ 1 (mod 3) and there is an integer n such

that p = ⌊√p⌋2 + 3n2.

Theorem 20. Let a = −1 and b = 6. The following hold for Wiman’s sextic W .

(i) The Jacobian variety of W over a field k have the following isogeny rela-

tion

JW ∼ E5 × E3
6 .

(ii) W over a finite field Fp attains Serre’s bound if and only if p ≡ 1 (mod 12),
⌊√p⌋ ≡ 2 (mod 3), ⌊2√p⌋ ≡ 1 (mod 3) and there is an integer n such

that p = ⌊√p⌋2 + 3n2.

(iii) W over Fp2 is maximal if and only if p ≡ 2 (mod 3).

Proof. (i) Since E3 and E4 are isogeneous to E5 and E6 respectively, it follows
from Theorem 16.
(ii) Using (i), we can prove it by the same method as the proof of (ii) of the above
proposition in [9].
(iii) From Example 4.4 in Chapter V of [14], E5 over Fp2 is maximal if and only if
p ≡ 2 (mod 3). By the same method, this condition also holds for E6. Therefore
the result follows from (i). �

Note that the prime numbers 541, 853, 1237, 1693, 2221, 2857, 3529, 4273,
7933, 11497, etc satisfy the condition in (ii) of the above theorem.

Theorem 21. Let a = 3 and b 6= −21, 6. The Jacobian variety of Wiman’s

sextic W over a field k have the following isogeny relation

JW ∼ E7 × E3
8 ,

where the elliptic curves are defined by E7 : y
2 = f7(x) and E8 : y

2 = f8(x) with

f7(x) = x3 − 33(b+ 18)(b− 6)3x+ 2 · 33(b2 + 24b+ 36)(b− 6)4,

f8(x) = x3 − (b− 6)x2 − 22(b − 6)2.

Proof. From Proposition 10, the Jacobian variety of Wiman’s sextic W over
a field k have the following isogeny relation when a = 3.

JW ∼ H2 ×H3
3 ,

where we have that H2 : x
3 + y3 +1+3(x2y+ xy2 + x2 +x+ y2 + y)+ bxy = 0 and

H3 : y
2 = −(4x3 + (b+ 6)x2 + 12x+ 4)(x+ 1). Actually, H2 and H3 are birational

to E7 and E8 respectively, and E7 and E8 are nonsingular when b 6= −21, 6. �

Similarly as Corollary 12, the following corollary is immediate.

Corollary 22. If a = 3 then #W (Fq) = #E7(Fq) + 3#E8(Fq)− 3q − 3.

Note that the j-invariants of E7 and E8 are respectively

− (b− 6)(b+ 18)3

b+ 21
, −24(b − 6)2

b+ 21
.
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Denote the coefficients of xp−1 in f7(x)
m and f8(x)

m by A7 and A8 respectively,
which means that

A7 =

⌊ p−1

3
⌋

∑

i=⌈ p−1

4
⌉

m! 22i−m33m−3i

i!(2i−m)!(2m− 3i)!
(−b− 18)2m−3i(b− 6)2m−i(b2 + 24b+ 36)2i−m,

A8 =

⌊
⌊
p−1

3
⌋

2
⌋

∑

i=0

m! (−1)m−2i22i

i!(2i)!(m− 3i)!
(b− 6)m−i.

Here ⌈⌉ means round up.

Theorem 23. Let a = 3 and b ∈ Fp\{−21, 6}. The following hold for Wiman’s

sextic W .

(i) Let p ≥ 17. W over Fp attains Serre’s bound if and only if

A7 ≡ A8 ≡ −⌊2
√
p⌋ (mod p).

(ii) W over Fp2 is maximal if and only if

A7 ≡ A8 ≡ 0 (mod p).

(iii) Let p ≥ 11. W over Fp3 attains Serre’s bound if and only if

A3
7 − 3pA7 = A3

8 − 3pA8 = −⌊2p√p⌋.
Proof. We can prove (i), (ii) and (iii) similarly as Theorem 13, Theorem 14

and Theorem 15 respectively. �

Note that the pairs satisfy the condition in (i) of the above theorem are (p, b)=
(9311, 7969), (13751, 1913), (19181, 1245), (23057, 9510), (37243, 4693), etc. The
pairs satisfy (ii) are (p, b) = (11, 7), (23, 21), (29, 11), (41, 17), (47, 46), (59, 11),
(71, 7), (83, 35), etc. The pairs satisfy (iii) are (p, b) = (11, 9), (61, 17), (67, 25),
(83, 41), (193, 72), (199, 192), (397, 125), (443, 62), etc. Here, we implement Corol-
lary 17 and 22 by MAGMA, and find new curves of genus 4, which we list in Table
3. For example, W over F53 has 198 rational points when a = 3 and b = β11 where
β is a root of u3 + 3u+ 3 = 0 in F53 . Here the best known lower bound is 196 and
the upper bound is 211 in [5].

Fq (a, b) primitive poly. #W (Fq) old entry
53 (3, β11) u3 + 3u+ 3 198 196 – 211
73 (−1, 4) 480 454 – 489

113 (3, 9) 1620 1580 – 1620
133 (−1, β87) u3 + 2u+ 11 2538 2510 – 2570
173 (3, β956) u3 + u+ 14 5430 5414 – 5474
193 (3, 11) 7500 7470 – 7520
75 (−1, β3519) u5 + u+ 4 17784 17780 – 17840

115 (−1, β35534) u5 + 10u2 + 9 164196 – 164260
135 (3, β11241) u5 + 4u+ 11 376086 – 376166
175 (3, β573629) u5 + u+ 14 1429254 – 1429390
195 (−1, β634132) u5 + 5u+ 17 2488608 – 2488688

Table 3. W of genus 4 with many points



WIMAN’S AND EDGE’S SEXTIC ATTAINING SERRE’S BOUND II 11

5. Edge’s sextic

In 1980 Edge introduced a family of sextics in [2] to research on Wiman’s
sextic V . It is defined by the following defining equation

x6 + y6 +1+ (x2 + y2 +1)(x4 + y4 +1)− 12x2y2 +α(y2 − 1)(1− x2)(x2 − y2) = 0.

We denote it by G, and call it Edge’s sextic; see also [1] for its geometrical proper-
ties. It is Wiman’s sextic V in Section 2 when α = 0.

Set p > 3 in this section.

Proposition 24. The Jacobian variety of Edge’s sextic over a field k have the

following isogeny relation

JG ∼ JD × J2
D′ ,

where D : y2 = hα(x) and D′ : y2 = h−α(x) with

hα(x) = (−6x3 + (9 + α)x2 − (α+ 7)x+ 2)(2x3 + (1 + α)x2 + (1− α)x + 2).

Proof. We have σ : (x, y) 7→ (−x, y) and τ : (x, y) 7→ (x,−y) as automor-
phisms of the sextic G. Applying Corollary 9 to G we obtain that

JG × J2
G/〈σ,τ〉 ∼ JG/〈σ〉 × JG/〈τ〉 × JG/〈στ〉,

Here G/〈σ〉 is birational to
x3 + y6 + 1 + (x+ y2 + 1)(x2 + y4 + 1)− 12xy2 + α(y2 − 1)(1− x)(x − y2) = 0.

After we set y2 = uX + 1 and x = X + 1, we can denote this equation as

X2((2u3 + (1 + α)u2 + (1− α)u + 2)X + 8(u2 − u+ 1)) = 0.

Since y2 = uX + 1, we have that

y2 = 1− 8u(u2 − u+ 1)/(2u3 + (1 + α)u2 + (1 − α)u+ 2).

Therefore, it is birational to D : y2 = hα(x).
Similarly, we have that G/〈τ〉 and G/〈στ〉 are birational to D′. Since the genus

of G/〈σ, τ〉 is 0, we can prove the assertion. �

Corollary 25. #G(Fq) = 3#D(Fq)− 2q − 2.

Proof. It is well known that #G(Fq) = q + 1 − t, where t is the trace of
Frobenius acting on a Tate module of JG. Theorem 24 implies that this Tate module
is isomorphic to a direct sum of the Tate modules of JD and two copies of the Tate
module of JD′ . Hence t = t1 + 2t2, where t1 and t2 are the traces of Frobenius on
the Tate modules of JD and JD′ respectively. Since we have #D(Fq) = #D′(Fq),
t1 = q + 1−#D(Fq) and t2 = q + 1−#D′(Fq), the result follows. �

We implement Corollary 25 by KASH/KANT computational algebra system,
and find maximal curves.

Example 26. Edge’s sextic G is maximal over Fp2 for (p, α) is equal to (19, 0),
(29, 0), (59, 12), (79, 0), (109, β715) where β is a root of u2 − u + 6 = 0 in F1092 ,
(139, 12), (149, 33), (179, 42), (199, 0), etc.

Next, let

hα(x)
m =

N
∑

j=0

cj(α)x
j , M(α) =

(

cp−1(α) cp−2(α)
c2p−1(α) c2p−2(α)

)

.

Here, M(α)(1/p) is called the Hasse–Witt matrix of the curve D.
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Proposition 27. If Edge’s sextic G over Fp2 is maximal then M(α) = 0.

Proof. If G is maximal then D is maximal by Corollary 25. When D is
maximal, we can prove it by Theorem 4.1 of [15]. �

Here, we have a conjecture.

Conjecture 28. Edge’s sextic G over Fp2 is maximal if and only if

cp−1(α) = cp−2(α) = 0.

Assume α ∈ Fp. We make computer search on D over Fp3 to find G over Fp3

attains Serre’s bound by Corollary 25. To reduce the computational complexity,
we use the numbers of rational points of D over Fp and Fp2 to compute them over
Fp3 . We list the algorithm here, which induces from the theory of Zeta function;
see 5.2. of [8] for example. Here we set ni = #D(Fpi) for i = 1, 2, 3.

Input n1, n2

a1 ← n1 − p− 1
a2 ← (n2 − p2 − 1 + a21)/2
ω1, · · · , ω4 ← roots of x4 + a1x

3 + a2x
2 + pa1x+ p2 = 0

n3 ← p3 + 1−∑4
i=1 ωi

3

Output n3

We implement it by KASH/KANT, and find curves attaining Serre’s bound.

Example 29. Edge’s sextic G over Fp3 attains Serre’s bound when (p, α) is
equal to (67, 0), (229, 110), (787, 356), (1021, 230), (1153, 154), (1229, 67), etc.
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R. Acad. Sci. Paris Sér. I Math. 296(9)(1983), 397–402.



WIMAN’S AND EDGE’S SEXTIC ATTAINING SERRE’S BOUND II 13

[14] J. H. Silverman, The arithmetic of elliptic curves, 2nd Edition, Graduate Texts in Mathe-
matics106(2009).

[15] S. Tafazolian, On supersingular curves over finite field, PhD Thesis, IMPA 2008.
[16] A. Wiman, Ueber eine einfache Gruppe von 360 ebenen Collineationen, Math. Ann. 48(1896),
531–556.

[17] A. Wiman, Zur Theorie der endlichen Gruppen von birationalen Transformationen in der
Ebene, Math. Ann. 48(1896), 195–240.

Division of Mathematics, Shiga University of Medical Science, Seta Tsukinowa-cho,

Otsu, Shiga, 520-2192 Japan

E-mail address: kawakita@belle.shiga-med.ac.jp


