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Finite number of fibre products of Kummer covers
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Abstract We study fibre products of a finite number of Kummer covers of the
projective line over finite fields. We determine the number of rational points of
the fibre product over a rational point of the projective line, which improves the
results of [9] substantially. We also construct explicit examples of fibre products of
Kummer covers with many rational points, including a record and two new entries
for the current table [12].

Keywords Curves with many points over finite fields · Kummer covers · fibre
products

1 Introduction

Let Fq be a finite field with q = pn elements, where p is a prime number. For
an absolutely irreducible, nonsingular and projective curve χ defined over Fq, let
N be the number of Fq-rational points of χ and g(χ) be its genus. The number N
is bounded by the Hasse-Weil bound

N ≤ q + 1 + 2g(C)√q. (1)

If the bound in (1) is attained and g(χ) ≥ 1, then χ is called a maximal curve.
There are some improvements on (1) especially when g(χ) is large [3], [4], [6],
[10], [11]. Let Nq(g) denote the maximum number of Fq-rational points among
the absolutely irreducible, nonsingular and projective curves of genus g defined
over Fq. It is an important problem to determine Nq(g) and to construct explicit
curves with many rational points (see [2], and [12] for the current tables). There
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are many applications to areas including coding theory, cryptography and quasi-
random points [4], [6], [7], [10], [11].

Some types of fibre products of Kummer covers of the projective line were
studied and such explicit curves with many points were found [1], [5], [8], [9]. In
particular in [9] we studied the general fibre products of two Kummer covers of the
projective line. In this paper we study the general fibre products of a finite number
of Kummer covers of the projective line. Namely let k ≥ 2 and n1, n2, . . . , nk ≥ 2
be integers, and h1(x), h2(x), . . . , hk(x) ∈ Fq(x). Consider the fibre product

yn1
1 = h1(x),

yn2
2 = h2(x),

...
ynk

k = hk(x).

(2)

Let E be the algebraic function field E = Fq(x, y1, y2, . . . , yk) with the system
of equations in (2). We will assume that [E : Fq(x)] = n1n2 . . . nk and the full
constant field of E is Fq. The theory of algebraic curves is essentially equivalent to
the theory of algebraic function fields. Throughout the paper we use the language
of function fields [10]. We call a degree one place of an algebraic function field as
a rational place (or rational point) of the function field.

Let P be a rational place of the rational function field Fq(x). In [9] we de-
termined the number of rational places of E over P when k = 2 under certain
conditions. Here we determine the number of rational places of E over P for an
arbitrary k ≥ 2 under some conditions in Theorems 2 and 3. The conditions in
Theorems 2 and 3 allow us to obtain the results systematically for arbitrary k ≥ 2.
However it turns out that these conditions are strong conditions (see Remark 4).
In Assumption 1, for arbitrary k ≥ 2, we develop a weak condition which seems
to be the most natural condition (in applying our methods) for determining the
number of rational places of E over P . Assumption 1 is also weaker than the
conditions of the theorems in [9] when k = 2. Therefore we reconsider the case
k = 2 under Assumption 1 and we improve the theorems of [9] in Theorem 4 (and
Remark 7) substantially. The proof of Theorem 4 is more difficult than the proof
of the theorems in [9] and we develop further tools in order to handle it in Section
4. The theorems of [9] correspond to a very special subcase of Theorem 4 (see
Remark 5).

We also give explicit examples of fibre products of Kummer covers with many
rational points. In particular Example 4 is a record; and Examples 5 and 7 are
new entries for the table [12].

We notice a mistake in the formulation of the theorems of [9] and we correct
it in Remark 6. This mistake does not affect the explicit examples in [9].

The paper is organized as follows. In Section 2 we fix some further notation
and introduce Assumption 1. We study the fibre products of an arbitrary number
of Kummer covers under a strong condition in Section 3. We study the general
fibre products of two Kummer covers under Assumption 1 in Section 4 and we
also develop the necessary tools there. Finally explicit examples of fibre products
with many rational points are presented in Section 5.
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2 Preliminaries

In this section we fix some notation and we introduce Assumption 1.
For an algebraic function field F with full constant field Fq, if f(x) ∈ F and P

is a rational place of F , then we denote the evaluation of f(x) at P by EvP (f(x)).
We choose u ∈ Fq and we denote the rational place of the rational function field
corresponding to the zero of (x−u) as P0. Similarly the rational place correspond-
ing to the pole of x is denoted as P∞. For 1 ≤ i ≤ k, the evaluation of fi(x) at P0

is denoted also by fi(u). Moreover F∗q denotes the multiplicative group Fq \ {0}.
For 1 ≤ i ≤ k, let ai be the integer and fi(x) ∈ Fq(x) be the rational function

satisfying

hi(x) = (x− u)aifi(x), and νP0(fi(x)) = 0.

The integer ai and the rational function fi(x) are uniquely determined by the
conditions above. For 1 ≤ i ≤ k, let n̄i, n′i and a′i be the integers:

n̄i = gcd(ni, ai), n′i =
ni

n̄i
, and a′i =

ai

n̄i
. (3)

Note that if ai = 0, then n′i = 1. We have

gcd(n′i, a
′
i) = 1 for 1 ≤ i ≤ k. (4)

Next we define the positive integers m2, m3, . . . , mk recursively as follows:

m2 = gcd(n′2, n
′
1),

m3 = gcd

(
n′3,

n′2
m2

n′1

)
= gcd

(
n′3, lcm (n′1, n

′
2)

)
,

m4 = gcd

(
n′4,

n′3
m3

n′2
m2

n′1

)
= gcd

(
n′4, lcm (n′1, n

′
2, n

′
3)

)
,

...

mk = gcd

(
n′k,

n′k−1

mk−1

n′k−2

mk−2
· · · n′2

m2
n′1

)
= gcd

(
n′k, lcm (n′1, n

′
2, . . . , n

′
k−1)

)
.

(5)

Remark 1 For k ≥ 3 the definitions of m2, m2, . . . , mk do depend on the order
(n′1, n

′
2, . . . , n

′
k) of the positive integers n′1, n

′
2, . . . , n

′
k. For instance let k = 3 and

consider the order (n′1, n
′
2, n

′
k) = (4, 6, 9), from which we get (m2, m3) = (2, 3). By

a simple reordering we have (ñ′1, ñ
′
2, ñ

′
3) = (9, 4, 6), from which we get (m̃2, m̃3) =

(1, 6).

Remark 2 Nevertheless the joint condition

m2 | (q − 1), m3 | (q − 1), . . . , and mk | (q − 1)

is independent from the order. For instance in the case of numerical examples of
Remark 1 we get the equivalent joint conditions

{m2 = 2 | (q − 1), m3 = 3 | (q − 1)} and {m̃2 = 1 | (q − 1), m̃3 = 6 | (q − 1)} .

We prove this independence in Lemma 1 below.
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The following will be our main assumption. For a prime ρ, let νρ be the ρ-adic
valuation: νρ(ρ) = 1, νρ(ρ2) = 2 and νρ(n) = 0 if n is an integer with gcd(n, ρ) = 1.

Assumption 1 For each prime ρ dividing n′1n
′
2 . . . n′k, the following condition

holds:
Let e1, e2, . . . , ek−1, ek be the nonnegative integers (depending on ρ) defined as

e1 = νρ(n′1), e2 = νρ(n′2), . . . , ek−1 = νρ(n′k−1), ek = νρ(n′k).

Let (ê1, ê2, . . . , êk−1, êk) be the reordering of (e1, e2, . . . , ek) such that

ê1 ≤ ê2 ≤ · · · ≤ êk−1 ≤ êk.

The condition is:

ρêk−1 | (q − 1) or equivalently νρ(q − 1) ≥ êk−1.

The following lemma shows that Assumption 1 is equivalent to the joint con-
dition mentioned in Remark 2.

Lemma 1 Under the notation as above we have that

m2 | (q − 1), m3 | (q − 1), . . . , and mk | (q − 1) (6)

if and only if Assumption 1 holds.

Proof We keep the notation of Assumption 1. It is enough to prove that for each
prime ρ dividing n′1n

′
2 . . . n′k, we have

max {νρ(m2), νρ(m3), . . . , νρ(mk)} = êk−1. (7)

We prove it by induction on k. The case k = 2 holds by definition. Assume that
k ≥ 2 and (7) holds for the case k. Namely we assume that

max {νρ(m2), . . . , νρ(mk)} = êk−1,

where (ê1, ê2, . . . , êk−1, êk) is the reordering of (e1, e2, . . . , ek−1, ek) such that ê1 ≤
ê2 ≤ · · · ≤ êk−1 ≤ êk.

Let ek+1 = νρ(n′k+1) and mk+1 = gcd
(
n′k+1, lcm

(
n′1, n

′
2, . . . , n

′
k

))
. We need

to prove that

max {νρ(m2), νρ(m3), . . . , νρ(mk), νρ(mk+1)} = ẽk, (8)

where (ẽ1, ẽ2, . . . , ẽk, ẽk+1) is the reordering of (e1, e2, . . . , ek−1, ek) such that ẽ1 ≤
ẽ2 ≤ · · · ≤ ẽk ≤ ẽk+1. Note that (8) is equivalent to

max {êk−1, νρ(mk+1)} = ẽk. (9)

Moreover we have

νρ(mk+1) = min {ek+1, max {e1, e2, . . . , ek}} = min {ek+1, êk} . (10)

Assume first that ek+1 ≤ êk. As we have êk ≥ max {ê1, ê2, . . . , êk−1} = êk−1, we
conclude that ẽk = max {êk−1, ek+1}. By (9) and (10), this implies (8).

Assume next that ek+1 > êk. We have ek+1 > êk ≥ êk−1 and hence ẽk = êk.
By (9) and (10), this implies (8). The proof is completed.

Remark 3 We observe that Assumption 1 is independent from the order (n′1, n
′
2, . . .

, n′k). Therefore the condition (6) in Lemma 1 is independent from the order as
well.
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3 Finite number of fibre products under a strong condition

We keep the notation of Section 2. In this section we determine the number of
rational places of E over P0 (and P∞) for an arbitrary finite number k, but under
a strong condition. Theorem 2 is the main result of this section. Its statement and
its proof are rather simple because of a nice condition (cf. in (12)). However it
turns out that this condition is actually a strong condition (see Remark 4).

We define the positive integers n̂1, n̂2, . . . n̂k recursively as:

n̂1 = gcd (n1, a1) = n̄1,

n̂2 = gcd

(
n2,

n1

n̂1
a2

)
,

n̂3 = gcd

(
n3,

n1

n̂1

n2

n̂2
a3

)
,

...

n̂k = gcd

(
nk,

n1

n̂1

n2

n̂2
. . .

nk−1

n̂k−1
ak

)
.

(11)

In Lemma 2 below we will show that actually n̂i = n̄imi for 2 ≤ i ≤ k.
In the proofs of Theorem 2 and 4 below, we will frequently use Proposition

3.7.3 in [10] on Kummer extensions. It allows us to determine the ramification and
inertia indices of certain field extensions explicitly. We prefer to cite it once here
instead of citing it many times in the proofs.

Theorem 2 Under the notation as above, assume that the full constant field
of E is Fq and [E : Fq(x)] = n1n2 . . . nk. Moreover assume that the integers
n̂1, n̂2, . . . , n̂k divide (q − 1) and also that

n̂2 | a2, n̂3 | a3, . . . , and n̂k | ak. (12)

There exist either no or exactly (n̂1n̂2 . . . n̂k) rational places of E over P0. There
exists a rational place of E over P0 if and only if all of the following conditions
hold

– f1(u) is an n̂1-power in F∗q ,

– f2(u) is an n̂2-power in F∗q ,
...

– fk(u) is an n̂k-power in F∗q .

Proof Let K0 = Fq(x). Moreover let K1, K2, . . . , Kk be the algebraic function
fields defined recursively as

– K1 = K0(y1) with yn1
1 = h1(x),

– K2 = K1(y2) with yn2
2 = h2(x),

...
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K1

n1

n̂1

L1

n̂1

K0

P1

e(P1 | Q1) =
n1

n̂1

Q1

@
@@ · · ·

¡
¡¡

e(Q1 | P0) = 1

P0

Fig. 1

– Kk = Kk−1(yk) with ynk

k = hk(x).

Note that Kk = E. Using the assumption [Kk : K0] = n1n2 . . . nk it is not difficult
to observe that

[K1 : K0] = n1, [K2 : K1] = n2, . . . [Kk : Kk−1] = nk.

Let L1 be the intermediate field K0 ⊆ L1 ⊆ K1 defined as

L1 = K0(w1) with wn̂1
1 = f1(x). (13)

Note that n̂1 divides a1 by definition of n̂1. We observe that

K1 = L1(y1) with y
n1
n̂1
1 = z1 = (x− u)

a1
n̂1 w1. (14)

Using the fact [K1 : K0] = n1, (13) and (14) we get that

[L1 : K0] = n̂1, and [K1 : L1] =
n1

n̂1
.

Moreover, the extension L1/K0 is a Galois extension as n̂1 | (q − 1).

Let Q1 be a place of L1 over P0 (see Figure 1). We have νP0(f1(x)) = 0,
gcd (n̂1, νP0(f1(x))) = n̂1 and hence the ramification index e (Q1|P0) is 1. As the
extension L1/K0 is a Galois extension, there are either no or exactly n̂1 rational
places of L1 over P0. Therefore Q1 is a rational place if and only if f1(u) is an
n̂1-power in F∗q .

Assume that Q1 is a rational place of L1 over P0. Let P1 be a place of K1 over
Q1 (see Figure 1). We have

νQ1(z1) =
a1

n̂1
, νQ1 (x− u) = 1, gcd

(
n1

n̂1
, νQ1(z1)

)
= 1

and hence the ramification index e (P1|Q1) is n1
n̂1

. In particular P1|Q1 is a total
ramification. Hence P1 is the unique place of K1 over Q1 and P1 is a rational
place. We further have that

νP1(x− u) =
n1

n̂1
.
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Ki

ni

n̂i

Li

n̂i

Ki−1

Pi

e(Pi | Qi) =
ni

n̂i

Qi

@
@@ · · ·

¡
¡¡

e(Qi | Pi−1) = 1

Pi−1

Fig. 2 (i ≥ 2)

Now we complete the proof by induction. For 2 ≤ i ≤ k − 1, assume that the
statement of the theorem holds and there exists a rational place Pi−1 of Ki−1 over
P0 such that

νPi−1(x− u) =
n1

n̂1

n2

n̂2
· · · ni−1

n̂i−1
if i ≥ 2. (15)

Let Li be the intermediate field Ki−1 ⊆ Li ⊆ Ki such that

Li = Ki−1(wi) with wn̂i
i = fi(x).

Note that by the assumption in (12) we have n̂i | ai. We have

Ki = Li(yi) with y
ni
n̂i
i = zi = (x− u)

ai
n̂i wi.

We observe that, as in the case i = 1 above,

[Li : Ki−1] = n̂i, [Ki : Li] =
ni

n̂i
,

and the extension Li/Ki−1 is Galois.
Let Qi be a place of Li over Pi−1 (see Figure 2). We have νPi−1(fi(x)) = 0,

and Qi is a rational place if and only if fi(u) is an n̂i-power in F∗q . Assume that
Qi is a rational place of Li over Pi−1. Let Pi be a place of Ki over Qi (see Figure
2). Using (15) we get that

νQi
(x− u) = e (Qi|Pi−1) νPi−1 (x− u) =

n1

n̂1

n2

n̂2
· · · ni−1

n̂i−1
. (16)

Then from (16) we obtain that

νQi
(zi) =

ai

n̂i
νQi

(x− u) =
n1

n̂1

n2

n̂2
· · · ni−1

n̂i−1

ai

n̂i
. (17)

Moreover

gcd

(
ni

n̂i
,
n1

n̂1

n2

n̂2
· · · ni−1

n̂i−1

ai

n̂i

)
= 1. (18)

Combining (17) and (18) we conclude that ramification index e(Pi|Qi) is ni

n̂i
. In

particular Pi|Qi is a total ramification, Pi is the unique place of Ki over Qi and
Pi is a rational place. Moreover

νPi
(x− u) =

n1

n̂1

n2

n̂2
· · · ni

n̂i
.

This completes the proof.
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The following lemma is used in Remark 4 below.

Lemma 2 Under the notation as above we have

n̂i = n̄imi for 2 ≤ i ≤ k.

Proof We prove by induction. Note that n′2 = n2/n̄2, a′2 = a2/n̄2 and

n̂2 = gcd(n2, n
′
1a2) = gcd(n̄2n

′
2, n

′
1n̄2a

′
2) = n̄2 gcd(n′2, n

′
1a
′
2) = n̄2m2,

where we use the facts gcd(n′2, a
′
2) = 1 and m2 = gcd(n′2, n

′
1) in the last equality.

For the induction, assume that 2 ≤ i ≤ k − 1 and

n̂j = n̄jmi for each j with 2 ≤ j ≤ i. (19)

We have

n̂i+1 = gcd

(
ni+1,

n1

n̂1

n2

n̂2
· · · ni

n̂i
ai+1

)
by definition in (11),

= gcd

(
ni+1,

n1

n̄1

n2

n̄2m2
· · · ni

n̄imi
ai+1

)
by (19),

= gcd

(
n̄i+1n

′
i+1,

n̄1n
′
1

n̄1

n̄2n
′
2

n̄2m2
· · · n̄in

′
i

n̄imi
n̄i+1a

′
i+1

)
by definitions in (3),

= n̄i+1 gcd

(
n′i+1, n

′
1

n′2
m2

n′3
m3

· · · n′i
mi

a′i+1

)

= n̄i+1 gcd

(
n′i+1, n

′
1

n′2
m2

n′3
m3

· · · n′i
mi

)
as gcd(n′i+1, a

′
i+1) = 1.

= n̄i+1mi+1 by definition in (5).

This completes the proof.

Remark 4 In the proof of Theorem 2, if 2 ≤ i ≤ k, then we show that Ki = Li(yi),
with

y
ni
n̂i
i = (x− u)

ai
n̂i wi.

Here we essentially use the assumption that ai/n̂i is an integer. By Lemma 2 this
means that n̂i = n̄imi divides ai = n̄ia

′
i, which is equivalent to mi | a′i (see (5)

and (4)). Therefore the assumption in (12) of Theorem 2 is the strong assumption
m2 = m3 = · · · = mk = 1. It is one of our main objectives to weaken this strong
assumption to the case of Assumption 1. In Theorem 4 we fulfill this objective
completely when k = 2. Its proof is more difficult than the proof of Theorem 2.

Next we give the analog of Theorem 2 for the place P∞. First we introduce
some notation that we use only in the following theorem. For 1 ≤ i ≤ k, let
fi,1(x) and fi,2(x) be the monic polynomials in Fq[x] and ci ∈ F∗q such that
gcd(fi,1(x), fi,2(x)) = 1 and

hi(x) = ci
fi,1(x)

fi,2(x)
.
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Moreover let di,1 and di,2 be the degrees of fi,1(x) and fi,2(x), respectively; and
let di = di,1 − di,2. Replacing ai by di in (3) and (5), we redefine n̄i, n′i and
m2, m3, . . . , mk. Furthermore replacing ai to di in (11), we also redefine n̂i. The
proof of the following theorem is similar to the proof of Theorem 2.

Theorem 3 Under the notation as above, assume that the full constant field
of E is Fq and [E : Fq(x)] = n1n2 · · ·nk. Moreover assume that the integers
n̂1, n̂2, . . . , n̂k divide (q − 1) and also that

n̂2 | d2, n̂3 | d3, . . . , and n̂k | dk.

There exist either no or exactly (n̂1n̂2 . . . n̂k) rational places of E over P∞. There
exists a rational place of E over P∞ if and only if all of the following conditions
hold

– c1 is an n̂1-power in F∗q ,

– c2 is an n̂2-power in F∗q ,
...

– ck is an n̂k-power in F∗q .

4 Fibre products of two Kummer covers

In this section we give our results for k = 2 under Assumption 1. Before
Theorem 4 we develop some tools that we use in its proof.

Proposition 1 Let C1, C2 be subgroups of F∗q with |C1| = n̄1, |C2| = n̄2. Let m be
a positive integer with m | (q−1) and N be an arbitrary integer. Let S = {(x1, x2) ∈
C1 × C2 : there exists s ∈ F∗q such that xN

1 x2 = sm}. Then the cardinality |S| of
S is

|S| = gcd(n̄1, N) gcd

(
n̄1

gcd(n̄1, N)
, n̄2

)
gcd

(
lcm

(
n̄1

gcd(n̄1, N)
, n̄2

)
,
q − 1

m

)
.

Moreover let C be the subset of F∗q defined as

C =
{
y ∈ F∗q : there exists (x1, x2) ∈ C1 × C2 and s ∈ F∗q such that y = xN

1 x2s
m

}
.

Then C is a subgroup of F∗q with the cardinality

|C| = lcm

(
lcm

(
n̄1

gcd(n̄1, N)
, n̄2

)
,
q − 1

m

)
.

Proof Let C
(N)
1 be the subset of F∗q defined as C

(N)
1 := {cN

1 : c1 ∈ C1}. It is easy

to observe that C
(N)
1 is a subgroup of F∗q with

|C(N)
1 | = n̄1

gcd(n̄1, N)
(20)

elements. Let C
(N)
1 C2 be the subset of F∗q defined as

C
(N)
1 C2 = {xN

1 x2 : x1 ∈ C1, x2 ∈ C2}.
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Similarly, C
(N)
1 C2 is a subgroup of F∗q with

|C(N)
1 C2| = lcm (|C(N)

1 |, |C2|). (21)

Note that

φ : C1 × C2 −→ F∗q
(x1, x2) 7−→ xN

1 x2

is a group homomorphism from the Cartesian product group C1×C2 to F∗q . More-

over the image of φ is exactly the subgroup C
(N)
1 C2. Hence

|Ker φ| = |C1||C2|
|Im φ| =

|C1||C2|
|C(N)

1 C2|
= gcd(n̄1, N) gcd

(
n̄1

gcd(n̄1, N)
, n̄2

)
(22)

where we use (20) and (21). Let M be the subset of F∗q defined as

M := {y ∈ F∗q : there exists s ∈ F∗q such that y = sm}.

It is clear that M is a subgroup of F∗q with |M | =
q − 1

m
. We observe that if

(x1, x2) ∈ C1 × C2 then

(x1, x2) ∈ S if and only if φ(x1, x2) ∈ C
(N)
1 C2 ∩M. (23)

Note that C
(N)
1 C2 ∩M is a subgroup of F∗q with cardinality

|C(N)
1 C2 ∩M | = gcd(|C(N)

1 C2|, |M |) (24)

Using (23) we obtain that S is exactly the preimage of the subgroup C
(N)
1 C2 ∩

M under the homomorphism φ. As |M | =
q − 1

m
, combining (22) and (24) we

determine the cardinality of S.

It is not difficult to observe that the subset C in the hypothesis of the propo-

sition is exactly C
(N)
1 C2M . This completes the proof.

In fact we can simplify the cardinality of S in Proposition 1. Before giving the
simplification we need to prove the following lemma.

Lemma 3 Let A be an arbitrary integer and m be a positive integer dividing
(q − 1). If A divides (q − 1) then

gcd

(
A,

q − 1

m

)
=

A

m
m̂,

where m̂ is the largest factor of m such that A divides (q − 1)/m̂.
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Proof Assume that A | (q − 1). Then there exists r ∈ Z such that A =
q − 1

r
. As

r | (q − 1) and m | (q − 1) we know that lcm (r, m) also divides (q − 1). Then we
have:

gcd

(
A,

q − 1

m

)
= gcd

(
q − 1

r
,
q − 1

m

)

=
q − 1

lcm (r, m)
=

q − 1

rm
gcd(r, m) =

q − 1
q−1
A m

gcd

(
q − 1

A
, m

)

=
A

m
gcd

(
q − 1

A
, m

)
=

A

m
m̂.

This completes the proof.

Combining Proposition 1 and Lemma 3 we obtain the following Corollary:

Corollary 1 Under the notations and assumptions of Proposition 1 we further
define m̂ as the largest factor of m such that A divides (q − 1)/m̂, where A =

lcm

(
n̄1

gcd(n̄1, N)
, n̄2

)
. Then we have that |S| = n̄1n̄2

m
m̂.

Proof Using Proposition 1 and the definition of A as above, we have

|S| = gcd(n̄1, N) gcd

(
n̄1

gcd(n̄1, N)
, n̄2

)
gcd

(
A,

q − 1

m

)
(25)

As n̄1 | (q−1), n̄2 | (q−1), we have A | (q−1). Using Lemma 3 and (25) we have:

|S| = gcd(n̄1, N) gcd

(
n̄1

gcd(n̄1, N)
, n̄2

)
A

m
m̂

= gcd(n̄1, N) gcd

(
n̄1

gcd(n̄1, N)
, n̄2

) lcm
(

n̄1
gcd(n̄1,N) , n̄2

)

m
m̂

= gcd(n̄1, N)
n̄1n̄2

gcd(n̄1, N)

m̂

m
=

n̄1n̄2

m
m̂.

This completes the proof.

The following theorem is one of our main results.

Theorem 4 Under the notation as in Section 2, let m2 = gcd(n′2, n
′
1) and E =

Fq(x, y1, y2) be the algebraic function field with

yn1
1 = h1(x),

yn2
2 = h2(x).

(26)

Assume that the full constant field of E is Fq and [E : Fq(x)] = n1n2. Moreover
assume that n̄1 | (q − 1), n̄2 | (q − 1) and Assumption 1 holds for the case k = 2.
As gcd(n′1, a

′
1) = 1, we choose integers A1 and B1 such that A1n

′
1 +B1a

′
1 = 1. Let

A = lcm

(
n̄1

gcd(−a′2B1, n̄1)
, n̄2

)
.
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Let m̂2 be the largest positive divisor of m2 such that A divides (q − 1)/m̂2. Then
there exist either no or exactly (n̄1n̄2m̂2) rational places of E over P0. Further-
more, there exists a rational place of E over P0 if and only if all of the following
conditions hold:

C1: f1(u) is an n̄1-power in Fq.

C2: f2(u) is an n̄2-power in Fq.

C3: Assume that the conditions in items C1, C2 above hold and let α1, α2 ∈ F∗q
such that αn̄1

1 = f1(u) and αn̄2
2 = f2(u). Let

B = lcm

(
A,

q − 1

m2

)
.

Then

(
α
−a′2B1
1 α2

)B
= 1.

Proof Let K0 = Fq(x). We divide the proof into three steps. In Step 1 we consider
certain intermediate fields E1, K1 and E2 with K0 ⊆ E1 ⊆ K1 ⊆ E2 ⊆ E and the
extensions E1/K0, K1/E1 and E2/K1 (see Figure 3). In Step 2 we consider an
intermediate field F2 with E2 ⊆ F2 ⊆ E and the extension F2/E2 (see Figure 4).
This is the main part of the proof. We use Corollary 1 in this part. In Step 3 we
consider the extension E/F2 and we complete the proof (see Figure 5).

Step 1

Let E1 be the intermediate field with K0 ⊆ E1 ⊆ E defined as

E1 = K0(z1) and zn̄1
1 = (x− u)a1f1(x),

or equivalently

(
z1

(x− u)a′1

)n̄1

= f1(x),
(27)

where we use the facts that n̄1 divides a1 and a′1 is the integer with a′1n̄1 = a1.
The extension E1/K0 is Galois as n̄1 divides (q− 1). Let P1 be an arbitrary place
of E1 over P0 (see Figure 3). We have

νP0(x− u) = 1, νP0(f1(x)) = 0, gcd (n̄1, νP0(f1(x))) = n̄1,

and hence the ramification index e(P1|P0) is 1. Therefore there are either no or
exactly n̄1 rational places of E1 over P0. Moreover P1 is a rational place of E1 if
and only if the evaluation f1(u) of f1(x) at P0 is an n̄1-power in F∗q . Hence from
here till the end of the proof we assume that the condition C1 in the hypothesis
of the theorem holds. Let P1 be a rational place of E1 over P0.

Let K1 be the intermediate field with E1 ⊆ K1 ⊆ E defined as

K1 = E1(y1) and y
n′1
1 = z1. (28)
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E2

n̄2

K1

n1

n̄1
= n′1

E1

n̄1

K0

P3

@
@ · · ·

¡
¡

e(P3 | P2) = 1

f(P3 | P2) = 1

P2

e(P2 | P1) = n′1

f(P2 | P1) = 1

P1

@
@ · · ·

¡
¡ e(P1 | P0) = 1

f(P1 | P0) = 1
P0

Fig. 3

Here the extension K1/E1 is not necessarily Galois. Let P2 be an arbitrary place
of K1 over P1 (see Figure 3). We have

νP1 (x− u) = 1, νP1 (z1) = a′1,

and using (4) we obtain

gcd
(
n′1, νP1 (z1)

)
= gcd(n′1, a

′
1) = 1.

Therefore the ramification index e (P2|P1) is n′1. In particular P2|P1 is a total
ramification, P2 is the unique place of K1 over P1, and P2 is a rational place of
K1. We further have that

νP2 (x− u) = n′1, νP2 (y1) = a′1, and νP2 (z1) = a′1n
′
1. (29)

Let E2 be the intermediate field with K1 ⊆ E2 ⊆ E defined as

E2 = K1(z2) and zn̄2
2 = (x− u)a2f2(x),

or equivalently

(
z2

(x− u)a′2

)n̄2

= f2(x).
(30)

The extension E2/K1 is a Galois extension. Let P3 be an arbitrary place of
E2 over P2 (see Figure 3). The extension E2/K1 is comparable to the extension
E1/K0. We have

νP2 (x− u) = n′1, νP2 (f2(x)) = 0, gcd (n̄2, νP2 (f2(x))) = n̄2,

and hence the ramification index e (P3|P2) is 1. There are either no or exactly
n̄2 rational places of E2 over P2; and P2 is a rational place of E2 if and only if
f2(u) is an n̄2-power in F∗q . Note that the evaluation of f2(x) at P2 is equal to the
evaluation of f2(x) at P0. Hence from here till the end of the proof we also assume
that condition C2 in the hypothesis of the theorem holds. Let P2 be a rational
place of E2 over P1. Using (29) we further obtain that

νP3 (x− u) = n′1, νP3 (y1) = a′1,
νP3 (z1) = a′1n

′
1, and νP3 (z2) = a′2n

′
1.

(31)
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F2

m2

E2

e(P4 | P3,1) = 1

f(P4 | P3,1) = 1

e(P ′4 | P3,2) = 1

f(P ′4 | P3,2) > 1

P ′4

@
@ · · ·

¡
¡

P4

@
@ · · ·

¡
¡

n̄1n̄2m̂2

m2
many

︷ ︸︸ ︷· · · · · · · · · · · · · · ·

P3,1 P3,2︸ ︷︷ ︸
n̄1n̄2 many

Fig. 4

Step 2

Let F2 be the intermediate field with E2 ⊆ F2 ⊆ E defined as

F2 = E2(w) and wm2 = z2. (32)

The extension F2/E2 is Galois as m2 divides (q−1). Recall that, as we have already
assumed that the conditions C1 and C2 hold, the number of rational places of E2

over P0 is n̄1n̄2. Let T be the set of rational places of E2 over P0. Recall also that
α1 and α2 are the chosen elements of F∗q with αn̄1

1 = f1(u) and αn̄2
2 = f2(u). Let

P3 be an arbitrary place in T . Using (27), (30) and (31), for the evaluations

β1 = EvP3

(
z1

(x− u)a′1

)
and β2 = EvP3

(
z2

(x− u)a′2

)
,

we conclude that βn̄1
1 = f1(u) and βn̄2

2 = f2(u). Let C1 and C2 be the subgroups
of F∗q with |C1| = n̄1 and |C2| = n̄2. Therefore we obtain that the map

ϕ : T → C1 × C2

P3 7→
(

1
α1

EvP3

(
z1

(x−u)a′1

)
, 1

α2
EvP3

(
z2

(x−u)a′2

))

is a bijection between the set T and the cartesian product group C1 × C2.
Now we state the main difficulty in Step 2. Note that in all the extensions in

Step 1, the places over P0 are all rational or all non-rational, depending on the
conditions C1 and C2. We will see that this is not the case in the extension F2/E2

in general. Let T1 be the subset of T consisting of the places P3 ∈ T such that
there exists a rational place of F2 over P3. Let T2 = T \ T1. A generic element of
T1 is indicated as P3,1 in Figure 4. Similarly a generic element of T2 is indicated

as P3,2 in Figure 4. We will prove that the cardinality of T1 is
n̄1n̄2m̂2

m2
, where m̂2

is the positive integer defined in the hypothesis of the theorem.
Recall that A1 and B1 are the integers with A1n

′
1 + B1a

′
1 = 1. Let t be the

element of E2 given by

t = (x− u)A1yB1
1 .
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Let P3 be an arbitrary element of T . Using (31) we get

νP3(t) = A1n
′
1 + B1a

′
1 = 1.

In particular t is a local parameter of E2 for all places in T . Using (31) we also
get that

νP3

(
z2

tn
′
1a′2

)
= 0.

Recall that m2 divides n′1. An alternative definition of F2, which is equivalent to
the one in (32) is

F2 = E2


 w

t
a′2

n′1
m2


 and


 w

t
a′2

n′1
m2




m2

=
z2

ta
′
2n′1

.

Hence T1 is exactly the subset of T consisting of P3 ∈ T such that

EvP3

(
z2

ta
′
2n′1

)
is an m2-power in F∗q .

Let N be the integer N = −B1a
′
2. We also have the following

z2

ta
′
2n′1

=
z2

(x− u)a′2

(x− u)a′2

ta
′
2n′1

=
z2

(x− u)a′2

(x− u)a′2(A1n′1+B1a′1)

ta
′
2n′1

,

=
z2

(x− u)a′2

(x− u)a′2(A1n′1+B1a′1)

(x− u)A1a′2n′1y
B1a′2n′1
1

by definition of t,

=
z2

(x− u)a′2

(x− u)B1a′1a′2

y
B1a′2n′1
1

,

=
z2

(x− u)a′2

(
(x− u)a′1

z1

)B1a′2

by (28),

=
z2

(x− u)a′2

(
z1

(x− u)a′1

)N

by definition of N .

(33)

Let ϕ(P3) = (c1, c2). Then by definition of ϕ

EvP3

(
z1

(x− u)a′1

)
= α1c1 and EvP3

(
z2

(x− u)a′2

)
= α2c2. (34)

Combining (33) and (34) we obtain that

EvP3

(
z2

ta
′
2n′1

)
= (α1c1)

N α2c2. (35)

Let S̃ be the subset of C1 × C2 consisting of (c1, c2) ∈ C1 × C2 such that
(α1c1)

N α2c2 is an m2-power in F∗q . Using (35) and the arguments above we con-

clude that |T1| = |S̃|. In fact ϕ also gives a bijection between T1 and S̃.
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We determine |S̃| using a related subset of C1×C2 and a related subset of F∗q .

Let S be the subset of C1×C2 consisting of (c1, c2) ∈ C1×C2 such that cN
1 c2 is an

m2-power in F∗q (cf. Proposition 1 above). Let C be the subset of F∗q consisting of

y ∈ F∗q such that there exist (x1, x2) ∈ C1×C2 and s ∈ F∗q satisfying y = xN
1 x2s

m2

(cf. Proposition 1). In fact C is a subgroup of F∗q as proved in Proposition 1. We

claim that S̃ is nonempty if and only if αN
1 α2 ∈ C. Assume that S̃ 6= ∅ and

(c1, c2) ∈ S̃. Then there exists s ∈ F∗q such that (α1c1)
N α2c2 = sm2 . Therefore

αN
1 α2 =

(
1

c1

)N 1

c2
sm2 ,

and hence αN
1 α2 ∈ C. Conversely if αN

1 α2 ∈ C, then there exists (x1, x2) ∈ C1×C2

and s ∈ F∗q such that αN
1 α2 = xN

1 x2s
m2 . This implies that

(
1

x1
,

1

x2

)
∈ S̃, and

in particular S̃ is not empty. We further know the cardinality of the group C by

Proposition 1. Therefore |T1| 6= 0 if and only if
(
αN

1 α2

)|C|
= 1, which is condition

C3 of the hypothesis of the theorem. From here till the end of the proof we further
assume that condition C3 in the hypothesis of the theorem holds.

Next we determine the cardinality |T1|. Let (x1, x2) ∈ C1×C2 and s ∈ F∗q such
that

αN
1 α2 = xN

1 x2s
m2 .

Let θ be the map

θ : S → S̃
(c1, c2) 7→

(
c1
x1

,
c2
x2

)
.

It is not difficult to observe that θ is a bijection between S and S̃. Using Corollary
1 we conclude that

|T1| = |S̃| = |S| = n̄1n̄2

m2
m̂2.

Let P3,1 be a place of T1. Let P4 be an arbitrary place F2 over P3,1 (see Figure
4). The extension F2/E2 is Galois, the ramification e(P4|P3,1) and the inertia
f(P4|P3,1) indices are 1 and hence there are exactly m2 rational places of F2 over
P3,1. Therefore the number of rational places of F2 over P0 is

(
n̄1n̄2

m2
m̂2

)
m2 = n̄1n̄2m̂2.

Furthermore we have

νP4 (x− u) = n′1, νP4 (y1) = a′1,

νP4 (z2) = a′2n
′
1, and νP4 (w) = a′2

n′1
m2

.
(36)
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E = K2

n2

n̄2m2
=

n′2
m2

F2

P5

e(P5 | P4) =
n′2
m2

f(P5 | P4) = 1

P4

Fig. 5

Step 3

Let K2 be the intermediate field defined as

K2 = F2(y2) and y
n′2
m2
2 = w.

It is not difficult to observe that K2 = E. Moreover the extension K2/F2 is
not necessarily Galois. Let P5 be an arbitrary place of K2 over P4 (see Figure 5).
Using (36), (4) and (5) we obtain that

gcd

(
n′2
m2

, νP4 (w)

)
= gcd

(
n′2
m2

, a′2
n′1
m2

)
= 1.

Therefore the ramification index e(P5|P4) is
n′2
m2

, P5|P4 is a total ramification; and

P5 is a rational place of K2, which is also the unique place of K2 over P4. This
completes the proof.

Remark 5 We compare Theorem 4 and Theorems 2.2 and 2.5 of [9] in this remark.
We keep the notation of Theorem 4. One of the main conditions of Theorems 2.2
and 2.5 of [9] is m2lcm (n̄1, n̄2) | (q− 1) (see [9, C3 in Theorem 2.2] and [9, D3 in
Theorem 2.5]). We will show that

m2lcm (n̄1, n̄2) | (q − 1) =⇒ m̂2 = m2. (37)

Therefore there are either no or exactly n̄1n̄2m2 rational places over P0 (or P∞)
(see also Remark 7 below). The extra condition m2lcm (n̄1, n̄2) | (q − 1) corre-
sponds to a special subcase of Theorem 4, in which one does not need most of
the tools developed for its proof. Therefore the proofs of Theorems 2.2 and 2.5
of [9] are much easier than the proof of Theorem 4 here. Now we show (37). As
m2lcm (n̄1, n̄2) | (q − 1) and A divides lcm (n̄1, n̄2) by its definition, we get that
(m2A) | (q − 1) and hence m̂2 = m2.

Remark 6 There is a mistake in the formulation of Theorems 2.2 and 2.5 of
[9]. The condition C3 in the statement of Theorem 2.2 should be moved above.
Namely the phrase “n̄1, n̄2 and m divide q− 1” should be corrected to the phrase
“mlcm (n̄1, n̄2) | (q−1) and C3 should be removed form the list of the conditions.
The same correction should be made for the condition D3 in Theorem 2.5 of [9].
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Remark 7 Recall that in the end of Section 2, introducing the notation including
ci and di and redefining certain parameters by changing ai to di, we have obtained
the analog of Theorem 2 for the place P∞ in Theorem 3. Theorem 3 uses ci in its
statement instead of fi(u). Similarly we obtain the analog of Theorem 4 for the
place P∞. We do not to state it explicitly here as it can be easily derived from
Theorem 4 (see also [9, Theorems 2.2 and 2.5]).

5 Examples

In this section, using Theorem 4 and Remark 7, we obtain explicit examples
of fibre products of Kummer extensions with many rational places. In particular
Example 4 is a record; and Example 5 and Example 7 are new entries for the table
in [12]. As also indicated in the homepage (http://www.science.uva.nl/˜geer) of
Prof. Dr. Gerard van der Geer, the tables in [2] were last updated on October 7,
2009 and the current updated table of curves with many points is in the website
[12].

Throughout this section, for the algebraic function field E in the examples,
N(E) and g(E) denote the number of rational places and the genus of the function
field E, respectively.

Example 1 Let E = F5(x, y1, y2) be the function field over F5 given by the follow-
ing equations:

y2
1 = x(x2 − 2)

y2
2 = x3 − 2x2 − x− 2

The genus of E is g(E) = 4 and N(E) = 18. This is the best value known in the
table [12].

Example 2 Let E = F5(x, y1, y2, y3) be the function field over F5 given by the
following equations:

y2
1 = x(x2 − 2)

y2
2 = x3 − 2x2 − x− 2

y2
3 = x(x4 + 2x3 − 2x2 − 2x + 2)

The genus of E is g(E) = 5 and N(E) = 20. This is the best value known in the
table [12].

Example 3 Let E = F5(x, y1, y2, y3) be the function field over F5 given by the
following equations:

y2
1 = x(x2 − 2)

y2
2 = x3 − 2x2 − x− 2

y2
3 = x6 + 4x4 + 3x2 + 1

The genus of E is g(E) = 13 and N(E) = 36. This is the best value known in the
table [12].
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Example 4 Let E = F5(x, y1, y2, y3) be the function field over F5 given by the
following equations:

y2
1 = x(x2 − 2)

y2
2 = x3 − 2x2 − x− 2

y2
3 = x(x4 + x2 + 2)

The genus of E is g(E) = 15 and N(E) = 36. This is a new record. In this case
the best known lower bound is 35 in the table [12].

Example 5 Let E = F53(x, y1, y2) be the function field over F53 given by the
following equations:

y2
1 = x3 + x

y2
2 = x3 + x + 2

The genus of E is g(E) = 4 and N(E) = 170. This is a new entry for the table
[12].

Example 6 Let E = F7(x, y1, y2) be the function field over F7 given by the follow-
ing equations:

y2
1 = 1 + x2 + 2x3 + 6x5 + x6

y2
2 = x6 + 1

The genus of E is g(E) = 9 and N(E) = 32. This is the best value known in the
table [12].

Example 7 Let E = F112(x, y1, y2) be the function field over F112 given by the
following equations:

y2
1 = x3 + x

y12
2 = x2(1− x2)

The genus of E is g(E) = 31 and N(E) = 612. This is a new entry for the table
[12].

Example 8 Let E = F132(x, y1, y2) be the function field over F132 given by the
following equations:

y2
1 = x7 + 1

y7
2 = −x7 − 1

The genus of E is g(E) = 36 and N(E) = 1106. This function field is maximal.
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11. M. A. Tsfasman, S. G. Vlădut, D. Nogin, Algebraic geometric codes: basic notions, Math-

ematical Surveys and Monographs, 139. American Mathematical Society, Providence, RI
(2007).

12. manypoints-Table of Curves with Many Points, http://www.manypoints.org (Accessed 03
November 2011).


