MAXIMAL QUARTICS OVER \mathbb{F}_{n^2}

JAAP TOP

A result of Ibukiyama [3] implies that for every odd prime number p, a curve C of genus 3 defined over \mathbb{F}_{p^2} exists which is maximal over \mathbb{F}_{p^2} . This means that the number of rational points over \mathbb{F}_{p^2} on the curve satisfies

$$\#C(\mathbb{F}_{p^2}) = p^2 + 1 + 6p.$$

Ibukiyama's proof is not constructive. There are several examples of maximal genus 3 curves (we will recall some here), but a general convenient method that for given p prime constructs one such curve over \mathbb{F}_{p^2} seems unknown.

Here are some examples; see [4]. The Dyck-Fermat curve given by $x^4 + y^4 + z^4 = 0$ is maximal over \mathbb{F}_{p^2} , for every prime number $p \equiv 3 \mod 4$.

The hyperelliptic curve corresponding to $y^2 = x^7 + 1$ is maximal over \mathbb{F}_{p^2} , for every prime number $p \equiv 6 \mod 7$.

The hyperelliptic curve corresponding to $y^2 = (x-2)(x^2-2)(x^4-4x^2+1)$ is maximal over \mathbb{F}_{p^2} , for every prime number $p \equiv 13 \mod 24$.

Since the Dyck-Fermat curve yields an example over \mathbb{F}_{p^2} for all primes $p \equiv 3 \mod 4$, it seems natural to supplement this with examples which work for primes $p \equiv 1 \mod 4$.

Suppose p is an odd prime number. Take λ in an extension field of \mathbb{F}_p such that the elliptic curve E_{λ} given by $y^2 = x(x-1)(x-\lambda)$ is supersingular. It is known (see, e.g., [1, Prop. 2.2]) that this condition implies that $\lambda \in \mathbb{F}_{p^2}$. Furthermore, by [5, Thm. V-4.1] E_{λ} is supersingular if and only if

$$H_p(\lambda) := \sum_{i=0}^m {m \choose i}^2 \lambda^i = 0,$$

in which m = (p-1)/2. In particular, the polynomial $H_p(x) \in \mathbb{F}_p[x]$ factors as a product of polynomials of degree at most 2.

Now suppose $p \equiv 1 \mod 4$. Then $H_p(x)$ has no zeroes in \mathbb{F}_p , since if λ were such a zero, then $\#E_{\lambda}(\mathbb{F}_p) = p + 1 \equiv 2 \mod 4$, contradicting the fact that $E_{\lambda}(\mathbb{F}_p)$ contains a subgroup of order 4 generated by (0,0) and (1,0).

2 JAAP TOP

So if $p \equiv 1 \mod 4$ then $H_p(x)$ has (p-1)/4 pairs of zeroes $\lambda, \lambda^p \in \mathbb{F}_{p^2}$. For any such zero, consider the quadratic twist of E_{λ} defined as

$$E'_{\lambda}$$
: $(\lambda + 3)y^2 = x(x - 1)(x - \lambda)$.

We know from [1, Prop. 2.2] (see also [2,]) that $\#E_{\lambda}(\mathbb{F}_{p^2}) = p^2 + 1 - 2p$. Hence if $\lambda + 3$ is not a square in \mathbb{F}_{p^2} , then $\#E'_{\lambda}(\mathbb{F}_{p^2}) = p^2 + 1 + 2p$.

In this case, consider the genus 3 curve C_{λ} over \mathbb{F}_{p^2} given by

$$x^4 + y^4 + z^4 = (\lambda + 1)(x^2y^2 + y^2z^2 + z^2x^2).$$

From [2, Coroll. 12] we deduce $\#C_{\lambda}(\mathbb{F}_{p^2}) = p^2 + 1 + 6p$. So indeed this yields an explicit maximal curve of genus 3 over \mathbb{F}_{p^2} , provided a zero λ of $H_p(x)$ exists such that $\lambda + 3$ is not a square. This condition is equivalent to $H_p(x^2 - 3)$ having an irreducible factor of degree 4 in $\mathbb{F}_p[x]$ (namely, if μ is a zero of such a factor, then $\lambda := \mu^2 - 3 \in \mathbb{F}_{p^2}$ is a zero of $H_p(x)$ as desired).

In the following table, such a factor is given for each prime $p \equiv 1 \mod 4$ with p < 50. Given the factor $x^4 + ax^2 + b$, the corresponding λ is any root of $x^2 + (a+6)x + 3a + b + 9 = 0$.

$$5 \quad x^4 + 3x^2 + 3$$

$$13 \quad x^4 + x^2 + 2$$

$$17 \quad x^4 + 10x^2 + 11$$

$$29 \quad x^4 + 7x^2 + 15$$

$$37 \quad x^4 + 17$$

$$41 \quad x^4 + 2x^2 + 27$$

Whether or not this method provides a maximal curve over \mathbb{F}_{p^2} for every prime p, I do not know. It works for all p < 1000, and the number of factors of degree 4 of $H_p(x^2 - 3)$ seems to be increasing. So I guess that indeed the method will work for all p.

References

- [1] R. Auer and J. Top, Legendre Elliptic Curves over Finite Fields, Journal of Number Theory 95 (2002), 303–312.
- [2] R. Auer and J. Top, Some genus 3 curves with many points, p. 163-171 in Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci. 2369, Springer-Verlag, Berlin, 2002.
- [3] T. Ibukiyama, On rational points on curves of genus 3 over finite fields, Tôhoku Math. J. 45 (1993), 311–329.
- [4] T. Kodama, J. Top, and T. Washio, Maximal hyperelliptic curves of genus three, Finite Fields and their Appl. 15 (2009), 392–403.
- [5] J.H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, Berlin, 1986.